
12/4/10 11:04 PMGoogle C++ Style Guide

Page 1 of 12http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

Google C++ Style Guide
Revision 3.180

Benjy Weinberger
Craig Silverstein

Gregory Eitzmann
Mark Mentovai

Tashana Landray
Each style point has a summary for which additional
information is available by toggling the accompanying
arrow button that looks this way: ▶ . You may toggle
all summaries with the big arrow button:

▶ Toggle all summaries

Table of Contents

Header
Files

The #define Guard Header File Dependencies
Inline Functions The -inl.h Files
Function Parameter Ordering Names and Order of Includes

Scoping Namespaces Nested Classes
Nonmember, Static Member, and Global Functions
Local Variables Static and Global Variables

Classes Doing Work in Constructors Default Constructors
Explicit Constructors Copy Constructors Structs vs. Classes
Inheritance Multiple Inheritance Interfaces
Operator Overloading Access Control Declaration Order
Write Short Functions

Google-
Specific
Magic

Smart Pointers cpplint

Other C++
Features

Reference Arguments Function Overloading
Default Arguments Variable-Length Arrays and alloca()
Friends Exceptions Run-Time Type Information (RTTI)
Casting Streams Preincrement and Predecrement
Use of const Integer Types 64-bit Portability
Preprocessor Macros 0 and NULL sizeof Boost C++0x

Naming General Naming Rules File Names Type Names
Variable Names Constant Names Function Names
Namespace Names Enumerator Names Macro Names
Exceptions to Naming Rules

Comments Comment Style File Comments Class Comments
Function Comments Variable Comments
Implementation Comments

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Header_Files
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#The__define_Guard
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Header_File_Dependencies
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Inline_Functions
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#The_-inl.h_Files
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Function_Parameter_Ordering
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Names_and_Order_of_Includes
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Scoping
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Namespaces
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Nested_Classes
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Nonmember,_Static_Member,_and_Global_Functions
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Local_Variables
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Static_and_Global_Variables
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Classes
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Doing_Work_in_Constructors
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Default_Constructors
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Explicit_Constructors
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Copy_Constructors
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Structs_vs._Classes
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Inheritance
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Multiple_Inheritance
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Interfaces
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Operator_Overloading
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Access_Control
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Declaration_Order
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Write_Short_Functions
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Google-Specific_Magic
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Smart_Pointers
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#cpplint
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Other_C++_Features
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Reference_Arguments
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Function_Overloading
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Default_Arguments
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Variable-Length_Arrays_and_alloca__
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Friends
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Exceptions
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Run-Time_Type_Information__RTTI_
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Casting
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Streams
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Preincrement_and_Predecrement
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Use_of_const
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Integer_Types
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#64-bit_Portability
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Preprocessor_Macros
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#0_and_NULL
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#sizeof
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Boost
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#C++0x
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Naming
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#General_Naming_Rules
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#File_Names
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Type_Names
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Variable_Names
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Constant_Names
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Function_Names
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Namespace_Names
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Enumerator_Names
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Macro_Names
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Exceptions_to_Naming_Rules
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Comments
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Comment_Style
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#File_Comments
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Class_Comments
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Function_Comments
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Variable_Comments
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Implementation_Comments

12/4/10 11:04 PMGoogle C++ Style Guide

Page 2 of 12http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

▶

Punctuation, Spelling and Grammar TODO Comments
Deprecation Comments

Formatting Line Length Non-ASCII Characters Spaces vs. Tabs
Function Declarations and Definitions Function Calls
Conditionals Loops and Switch Statements
Pointer and Reference Expressions Boolean Expressions
Return Values Variable and Array Initialization
Preprocessor Directives Class Format
Constructor Initializer Lists Namespace Formatting
Horizontal Whitespace Vertical Whitespace

Exceptions
to the
Rules

Existing Non-conformant Code Windows Code

Important Note

Displaying Hidden Details in this Guide

This style guide contains many details that are initially hidden from view. They are
marked by the triangle icon, which you see here on your left. Click it now. You

should see "Hooray" appear below.

Background

C++ is the main development language used by many of Google's open-source
projects. As every C++ programmer knows, the language has many powerful features,
but this power brings with it complexity, which in turn can make code more bug-prone
and harder to read and maintain.

The goal of this guide is to manage this complexity by describing in detail the dos and
don'ts of writing C++ code. These rules exist to keep the code base manageable while
still allowing coders to use C++ language features productively.

Style, also known as readability, is what we call the conventions that govern our C++
code. The term Style is a bit of a misnomer, since these conventions cover far more
than just source file formatting.

One way in which we keep the code base manageable is by enforcing consistency. It is
very important that any programmer be able to look at another's code and quickly
understand it. Maintaining a uniform style and following conventions means that we can
more easily use "pattern-matching" to infer what various symbols are and what
invariants are true about them. Creating common, required idioms and patterns makes
code much easier to understand. In some cases there might be good arguments for
changing certain style rules, but we nonetheless keep things as they are in order to
preserve consistency.

Another issue this guide addresses is that of C++ feature bloat. C++ is a huge language
with many advanced features. In some cases we constrain, or even ban, use of certain
features. We do this to keep code simple and to avoid the various common errors and
problems that these features can cause. This guide lists these features and explains why
their use is restricted.

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Punctuation,_Spelling_and_Grammar
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#TODO_Comments
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Deprecation_Comments
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Formatting
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Line_Length
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Non-ASCII_Characters
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Spaces_vs._Tabs
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Function_Declarations_and_Definitions
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Function_Calls
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Conditionals
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Loops_and_Switch_Statements
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Pointer_and_Reference_Expressions
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Boolean_Expressions
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Return_Values
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Variable_and_Array_Initialization
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Preprocessor_Directives
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Class_Format
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Constructor_Initializer_Lists
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Namespace_Formatting
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Horizontal_Whitespace
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Vertical_Whitespace
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Exceptions_to_the_Rules
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Existing_Non-conformant_Code
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Windows_Code

12/4/10 11:04 PMGoogle C++ Style Guide

Page 3 of 12http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

▶

▶

▶

▶

▶

▶

▶

Open-source projects developed by Google conform to the requirements in this guide.

Note that this guide is not a C++ tutorial: we assume that the reader is familiar with the
language.

Header Files

In general, every .cc file should have an associated .h file. There are some common
exceptions, such as unittests and small .cc files containing just a main() function.

Correct use of header files can make a huge difference to the readability, size and
performance of your code.

The following rules will guide you through the various pitfalls of using header files.

The #define Guard

All header files should have #define guards to prevent multiple inclusion. The
format of the symbol name should be <PROJECT>_<PATH>_<FILE>_H_.

Header File Dependencies

Don't use an #include when a forward declaration would suffice.

Inline Functions

Define functions inline only when they are small, say, 10 lines or less.

The -inl.h Files

You may use file names with a -inl.h suffix to define complex inline functions
when needed.

Function Parameter Ordering

When defining a function, parameter order is: inputs, then outputs.

Names and Order of Includes

Use standard order for readability and to avoid hidden dependencies: C library, C++
library, other libraries' .h, your project's .h.

Scoping

Namespaces

Unnamed namespaces in .cc files are encouraged. With named namespaces,
choose the name based on the project, and possibly its path. Do not use a using-

directive.

12/4/10 11:04 PMGoogle C++ Style Guide

Page 4 of 12http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

▶

▶

▶

▶

▶

▶

▶

▶

▶

Nested Classes

Although you may use public nested classes when they are part of an interface,
consider a namespace to keep declarations out of the global scope.

Nonmember, Static Member, and Global Functions

Prefer nonmember functions within a namespace or static member functions to
global functions; use completely global functions rarely.

Local Variables

Place a function's variables in the narrowest scope possible, and initialize variables
in the declaration.

Static and Global Variables

Static or global variables of class type are forbidden: they cause hard-to-find bugs
due to indeterminate order of construction and destruction.

Classes

Classes are the fundamental unit of code in C++. Naturally, we use them extensively.
This section lists the main dos and don'ts you should follow when writing a class.

Doing Work in Constructors

In general, constructors should merely set member variables to their initial values.
Any complex initialization should go in an explicit Init() method.

Default Constructors

You must define a default constructor if your class defines member variables and
has no other constructors. Otherwise the compiler will do it for you, badly.

Explicit Constructors

Use the C++ keyword explicit for constructors with one argument.

Copy Constructors

Provide a copy constructor and assignment operator only when necessary.
Otherwise, disable them with DISALLOW_COPY_AND_ASSIGN.

Structs vs. Classes

Use a struct only for passive objects that carry data; everything else is a class.

Inheritance

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Namespaces

12/4/10 11:04 PMGoogle C++ Style Guide

Page 5 of 12http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

▶

▶

▶

▶

▶

▶

▶

▶

Composition is often more appropriate than inheritance. When using inheritance,
make it public.

Multiple Inheritance

Only very rarely is multiple implementation inheritance actually useful. We allow
multiple inheritance only when at most one of the base classes has an

implementation; all other base classes must be pure interface classes tagged with the
Interface suffix.

Interfaces

Classes that satisfy certain conditions are allowed, but not required, to end with an
Interface suffix.

Operator Overloading

Do not overload operators except in rare, special circumstances.

Access Control

Make data members private, and provide access to them through accessor
functions as needed (for technical reasons, we allow data members of a test fixture

class to be protected when using Google Test). Typically a variable would be called
foo_ and the accessor function foo(). You may also want a mutator function
set_foo(). Exception: static const data members (typically called kFoo) need not
be private.

Declaration Order

Use the specified order of declarations within a class: public: before private:,
methods before data members (variables), etc.

Write Short Functions

Prefer small and focused functions.

Google-Specific Magic

There are various tricks and utilities that we use to make C++ code more robust, and
various ways we use C++ that may differ from what you see elsewhere.

Smart Pointers

If you actually need pointer semantics, scoped_ptr is great. You should only use
std::tr1::shared_ptr under very specific conditions, such as when objects

need to be held by STL containers. You should never use auto_ptr.

cpplint

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Interfaces
http://code.google.com/p/googletest/

12/4/10 11:04 PMGoogle C++ Style Guide

Page 6 of 12http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

▶

▶

▶

▶

▶

▶

▶

▶

▶

▶

▶ Use cpplint.py to detect style errors.

Other C++ Features

Reference Arguments

All parameters passed by reference must be labeled const.

Function Overloading

Use overloaded functions (including constructors) only if a reader looking at a call
site can get a good idea of what is happening without having to first figure out

exactly which overload is being called.

Default Arguments

We do not allow default function parameters, except in a few uncommon situations
explained below.

Variable-Length Arrays and alloca()

We do not allow variable-length arrays or alloca().

Friends

We allow use of friend classes and functions, within reason.

Exceptions

We do not use C++ exceptions.

Run-Time Type Information (RTTI)

We do not use Run Time Type Information (RTTI).

Casting

Use C++ casts like static_cast<>(). Do not use other cast formats like int y
= (int)x; or int y = int(x);.

Streams

Use streams only for logging.

Preincrement and Predecrement

Use prefix form (++i) of the increment and decrement operators with iterators and
other template objects.

12/4/10 11:04 PMGoogle C++ Style Guide

Page 7 of 12http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

▶

▶

▶

▶

▶

▶

▶

▶

Use of const

We strongly recommend that you use const whenever it makes sense to do so.

Integer Types

Of the built-in C++ integer types, the only one used is int. If a program needs a
variable of a different size, use a precise-width integer type from <stdint.h>,

such as int16_t.

64-bit Portability

Code should be 64-bit and 32-bit friendly. Bear in mind problems of printing,
comparisons, and structure alignment.

Preprocessor Macros

Be very cautious with macros. Prefer inline functions, enums, and const variables
to macros.

0 and NULL

Use 0 for integers, 0.0 for reals, NULL for pointers, and '\0' for chars.

sizeof

Use sizeof(varname) instead of sizeof(type) whenever possible.

Boost

Use only approved libraries from the Boost library collection.

C++0x

Use only approved libraries and language extensions from C++0x. Currently, none
are approved.

Naming

The most important consistency rules are those that govern naming. The style of a
name immediately informs us what sort of thing the named entity is: a type, a variable,
a function, a constant, a macro, etc., without requiring us to search for the declaration of
that entity. The pattern-matching engine in our brains relies a great deal on these
naming rules.

Naming rules are pretty arbitrary, but we feel that consistency is more important than
individual preferences in this area, so regardless of whether you find them sensible or
not, the rules are the rules.

General Naming Rules

12/4/10 11:04 PMGoogle C++ Style Guide

Page 8 of 12http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

▶

▶

▶

▶

▶

▶

▶

▶

▶

▶

Function names, variable names, and filenames should be descriptive; eschew
abbreviation. Types and variables should be nouns, while functions should be

"command" verbs.

File Names

Filenames should be all lowercase and can include underscores (_) or dashes (-).
Follow the convention that your project uses. If there is no consistent local pattern

to follow, prefer "_".

Type Names

Type names start with a capital letter and have a capital letter for each new word,
with no underscores: MyExcitingClass, MyExcitingEnum.

Variable Names

Variable names are all lowercase, with underscores between words. Class member
variables have trailing underscores. For instance:

my_exciting_local_variable, my_exciting_member_variable_.

Constant Names

Use a k followed by mixed case: kDaysInAWeek.

Function Names

Regular functions have mixed case; accessors and mutators match the name of the
variable: MyExcitingFunction(), MyExcitingMethod(),

my_exciting_member_variable(), set_my_exciting_member_variable().

Namespace Names

Namespace names are all lower-case, and based on project names and possibly
their directory structure: google_awesome_project.

Enumerator Names

Enumerators should be named either like constants or like macros: either
kEnumName or ENUM_NAME.

Macro Names

You're not really going to define a macro, are you? If you do, they're like this:
MY_MACRO_THAT_SCARES_SMALL_CHILDREN.

Exceptions to Naming Rules

If you are naming something that is analogous to an existing C or C++ entity then
you can follow the existing naming convention scheme.

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Constant_Names
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Macro_Names
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Preprocessor_Macros

12/4/10 11:04 PMGoogle C++ Style Guide

Page 9 of 12http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

▶

▶

▶

▶

▶

▶

▶

▶

Comments

Though a pain to write, comments are absolutely vital to keeping our code readable.
The following rules describe what you should comment and where. But remember: while
comments are very important, the best code is self-documenting. Giving sensible names
to types and variables is much better than using obscure names that you must then
explain through comments.

When writing your comments, write for your audience: the next contributor who will need
to understand your code. Be generous — the next one may be you!

Comment Style

Use either the // or /* */ syntax, as long as you are consistent.

File Comments

Start each file with a copyright notice, followed by a description of the contents of
the file.

Class Comments

Every class definition should have an accompanying comment that describes what it
is for and how it should be used.

Function Comments

Declaration comments describe use of the function; comments at the definition of a
function describe operation.

Variable Comments

In general the actual name of the variable should be descriptive enough to give a
good idea of what the variable is used for. In certain cases, more comments are

required.

Implementation Comments

In your implementation you should have comments in tricky, non-obvious,
interesting, or important parts of your code.

Punctuation, Spelling and Grammar

Pay attention to punctuation, spelling, and grammar; it is easier to read well-written
comments than badly written ones.

TODO Comments

Use TODO comments for code that is temporary, a short-term solution, or good-
enough but not perfect.

12/4/10 11:04 PMGoogle C++ Style Guide

Page 10 of 12http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

▶

▶

▶

▶

▶

▶

▶

▶

▶

Deprecation Comments

Mark deprecated interface points with DEPRECATED comments.

Formatting

Coding style and formatting are pretty arbitrary, but a project is much easier to follow if
everyone uses the same style. Individuals may not agree with every aspect of the
formatting rules, and some of the rules may take some getting used to, but it is
important that all project contributors follow the style rules so that they can all read and
understand everyone's code easily.

To help you format code correctly, we've created a settings file for emacs.

Line Length

Each line of text in your code should be at most 80 characters long.

Non-ASCII Characters

Non-ASCII characters should be rare, and must use UTF-8 formatting.

Spaces vs. Tabs

Use only spaces, and indent 2 spaces at a time.

Function Declarations and Definitions

Return type on the same line as function name, parameters on the same line if they
fit.

Function Calls

On one line if it fits; otherwise, wrap arguments at the parenthesis.

Conditionals

Prefer no spaces inside parentheses. The else keyword belongs on a new line.

Loops and Switch Statements

Switch statements may use braces for blocks. Empty loop bodies should use {} or
continue.

Pointer and Reference Expressions

No spaces around period or arrow. Pointer operators do not have trailing spaces.

Boolean Expressions

http://google-styleguide.googlecode.com/svn/trunk/google-c-style.el

12/4/10 11:04 PMGoogle C++ Style Guide

Page 11 of 12http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

▶

▶

▶

▶

▶

▶

▶

▶

▶

▶

When you have a boolean expression that is longer than the standard line length,
be consistent in how you break up the lines.

Return Values

Do not needlessly surround the return expression with parentheses.

Variable and Array Initialization

Your choice of = or ().

Preprocessor Directives

Preprocessor directives should not be indented but should instead start at the
beginning of the line.

Class Format

Sections in public, protected and private order, each indented one space.

Constructor Initializer Lists

Constructor initializer lists can be all on one line or with subsequent lines indented
four spaces.

Namespace Formatting

The contents of namespaces are not indented.

Horizontal Whitespace

Use of horizontal whitespace depends on location. Never put trailing whitespace at
the end of a line.

Vertical Whitespace

Minimize use of vertical whitespace.

Exceptions to the Rules

The coding conventions described above are mandatory. However, like all good rules,
these sometimes have exceptions, which we discuss here.

Existing Non-conformant Code

You may diverge from the rules when dealing with code that does not conform to
this style guide.

Windows Code

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Line_Length

12/4/10 11:04 PMGoogle C++ Style Guide

Page 12 of 12http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

▶ Windows programmers have developed their own set of coding conventions, mainly
derived from the conventions in Windows headers and other Microsoft code. We

want to make it easy for anyone to understand your code, so we have a single set of
guidelines for everyone writing C++ on any platform.

Parting Words

Use common sense and BE CONSISTENT.

If you are editing code, take a few minutes to look at the code around you and
determine its style. If they use spaces around their if clauses, you should, too. If their
comments have little boxes of stars around them, make your comments have little boxes
of stars around them too.

The point of having style guidelines is to have a common vocabulary of coding so
people can concentrate on what you are saying, rather than on how you are saying it.
We present global style rules here so people know the vocabulary. But local style is
also important. If code you add to a file looks drastically different from the existing code
around it, the discontinuity throws readers out of their rhythm when they go to read it.
Try to avoid this.

OK, enough writing about writing code; the code itself is much more interesting. Have
fun!

Revision 3.180

Benjy Weinberger
Craig Silverstein

Gregory Eitzmann
Mark Mentovai

Tashana Landray

