Advanced RISC Machines

The ARM Instruction Set

The ARM Instruction Set - ARM University Program - V1.0

B B POWERED
=

O

|

Processor Modes

* The ARM has six operating modes:
¥ User (unprivileged mode under which most tasks run)
¥ FIQ (entered when ahigh priority (fast) interrupt is raised)
¥ |IRQ (entered when alow priority (normal) interrupt is raised)

¥ Supervisor (entered on reset and when a Software Interrupt instruction is
executed)

¥ Abort (used to handle memory access violations)
¥ Undef (used to handle undefined instructions)
* ARM Architecture Version 4 adds a seventh mode:

¥ System (privileged mode using the same registers as user mode)

B B POWERED
=
| ‘

The ARM Instruction Set - ARM University Program - V1.0

The Registers

* ARM has 37 registersin total, all of which are 32-bitslong.
¥ 1 dedicated program counter
¥ 1 dedicated current program status register
¥ 5 dedicated saved program status registers
¥ 30 general purpose registers

* However these are arranged into several banks, with the accessible
bank being governed by the processor mode. Each mode can access

¥ aparticular set of rO-r12 registers
¥ aparticular r13 (the stack pointer) and r14 (link register)
¥ rl5 (the program counter)
¥ cpsr (the current program status register)
and privileged modes can also access
¥ aparticular spsr (saved program status register)

g

™

B POWERED

The ARM Instruction Set - ARM University Program - V1.0

3

Register Organisation

General registersand Program Counter

User 32/ System FI1Q32 Supervisor 32 Abort32 IRQ32 Undefined32

r0 r0 ro ro r0 r0

rl rl rl rl rl rl

r2 r2 r2 r2 r2 r2

r3 r3 r3 r3 r3 r3

r4 r4 r4 r4 r4 r4

5 5 5 5 5 5

(6) (6) ré ré (6) (6)

r7 r7 r7 r7 r7 r7

r8 r8 fiq r8 r8 r8 r8

r9 r9 fiq r9 r9 r9 r9

rl0 r10 fiq rl0 rl0 rl0 rl0

ril ril fiq ril ril ril ril

ri2 r12 fiq ri2 ri2 rl2 rl2
r13 (sp) r13 fiq rl3 svc rl3 abt rl3 irq r13 undef
r14 (Ir) rl4 fiq rl4 svc rl4 abt rl4 irq r14 undef
r15 (pc) r15 (pc) r15 (pc) r15 (pc) r15 (pc) r15 (pc)

Program Status Registers
cpsr | cpsr cpsr cpsr cpsr cpsr
spsr_fiq Spsr_svc Spsr_abt spsr_irq spsr_undef

The ARM Instruction Set - ARM University Program - V1.0

(=]
w
&
(AT}
=
=)
o
|

Register Example:
User to FIQ Mode

Registersin use Registersin use
User Mode FIQ Mode

r0 : r0
rl rl
r2 r2
r3 r3
r4 r4
5 : 5
r6 r6
r7 . r7
r8 r8_fig EXCEPTION r8 r8 fiq
r9 r9 fig r9 r9 fiq
r10 r10_fiq » r10 r10 fiq
ril r1l fig : ri1 rll fig
r12 r12 fig : ri2 ri2 fig

13 (D) r13 fig 113 (sp) 113 fig

ri4(n ri4 fig : ri4 (I r14 fig

r15 (pc) : r15 (pc)

\Return address calculated from User mode

e PC valueand stored in FIQ mode LR p—

\ sp_fig
User mode CPSR copied to FIQ mode SPSR /

(=]
w
&
(AT}
=
=)
o
|

The ARM Instruction Set - ARM University Program - V1.0

Accessing Registers using
ARM Instructions

* No breakdown of currently accessible registers.
¥ All instructions can access rO-r14 directly.
¥ Most instructions also allow use of the PC.
* Specific instructionsto allow accessto CPSR and SPSR.

* Note: When in a privileged mode, it isalso possibleto load / storethe
(banked out) user moderegistersto or from memory.

¥ Seelater for details.

B B POWERED
=

The ARM Instruction Set - ARM University Program - V1.0

The Program Status Registers
(CPSR and SPSRs)

31 28

8 4 0

NEEN

3 o ode”

%

Copies of the ALU status flags (latched if the
instruction hasthe"S" bit set).

* Condition Code Flags

N = Negative result from ALU flag.

Z = Zeroresult from ALU flag.
C = ALU operation Carried out
V = ALU operation oVerflowed

* ModeBits
M[4.0] define the processor mode.

The ARM Instruction Set - ARM University Program - V1.0

Interrupt Disable bits.
| =1, disablesthe IRQ.
F =1, disablesthe FIQ.

it (Architecturev4T only)
O, Processor in ARM state
1, Processor in Thumb state

1l oo

T
T
T

B POWERED

g
™

Condition Flags

L ogical Instruction

Arithmetic Instruction

Flag
Negative
(N=QQ
Zero
(2=Q0Q

Carry
(C=AQ9

oV erjl ow
(V=QO0

NoO meaning

Result is all zeroes

After Shift operation
QOwas left in carry flag

NoO meaning

The ARM Instruction Set - ARM University Program - V1.0

Bit 31 of the result has been set
Indicates a negative number in
signed operations

Result of operation was zero

Result was greater than 32 bits

Result was greater than 31 bits
Indicates a possible corruption of
the sign bit in signed

numbers

B POWERED
O

-
=

The Program Counter (R15)

* When the processor isexecutingin ARM state;
¥ All instructions are 32 bitsin length
¥ All instructions must be word aligned

¥ Therefore the PC value is stored in bits [31:2] with bits [1:0] equal to
zero (as instruction cannot be halfword or byte aligned).

* R14isused asthe subroutinelink register (LR) and storesthereturn
address when Branch with Link operations are performed,
calculated from the PC.

* Thustoreturn from alinked branch
¥ MOV rl15,r14

or
¥ MOV pc, |

B B POWERED
=

The ARM Instruction Set - ARM University Program - V1.0

Exception Handling
and the Vector Table

* When an exception occurs, the core:
¥ Copies CPSR into SPSR_<mode>
¥ Sets appropriate CPSR bits
 If coreimplements ARM Architecture 4T and is

0x00000000 Reset

0x00000004 | Undefined Instruction

0x00000008 | Software Interrupt

currently in Thumb state, then 0x0000000C Prefetch Abort
+ ARM state is entered. 0x00000010 Data Abort
Mode field bits 0x00000014 Reserved
. Interrupt disable flags if appropriate. 0x00000018 IRQ
¥ Mapsin appropriate banked registers oxoo00001c | FIQ

¥ Storesthe Geturn addressOin LR_<mode>
¥ Sets PC to vector address
* Toreturn, exception handler needsto:
¥ Restore CPSR from SPSR_<mode>
¥ Restore PC from LR_<mode>

B POWERED

The ARM Instruction Set - ARM University Program - V1.0 0 10

-
=

The Instruction Pipeline

* The ARM usesapipelinein order to increasethe speed of the flow of
Instructionsto the processor.

¥ Allows several operations to be undertaken simultaneously, rather than

serialy.
ARM
PC FETCH
PC - DECODE
PC EXECUTE

Instruction fetched from memory

Decoding of registers used in instruction

Register(s) read from Register Bank
Shift and ALU operation
Write register(s) back to Register Bank

* Rather than pointing to the instruction being executed, the

PC pointsto theinstruction being fetched.

The ARM Instruction Set - ARM University Program - V1.0

(=]
w
&
(AT}
=
=)
o
|

g
™

Quiz #1 - Verbal

* What registers are used to store the program counter and link register?
* What is r13 often used to store?

* Which mode, or modes has the fewest available number of registers
available? How many and why?

(=]
w
&
(AT}
=
=)
o
|

The ARM Instruction Set - ARM University Program - V1.0 0 12

™

ARM Instruction Set Format

| nstruction type

31 2827 1615 87 0
Cond 0 q I] Opcode | S Rn Rd Oper and2

Cond OOOOOOIAS Rd Rn Rs 1001 Rm

Cond O0O00UAS RdHi RdLo Rs 1001 Rm

Cond OOOlOIBlOO Rn Rd OOOO|1001 Rm

Cond O]|I H LBIWL Rn Rd O f set

Cond 10QHUYWL Rn Regi st er Li st

Cond 0O00OHU1 L Rn Rd Ofsetl] 1 H|1 O fset?2
Cond 00O FLOV*L Rn Rd 00001SH|1 Rm

Cond 1014 Q O f set

Cond 000100102 111412 1111111430001 Rn

Cond 11 Q9QHUN V‘*L Rn CRd CPNum O fset

Cond 1110 Opl CRn CRd CPNum| Op2 |O CRm
Cond 1110 Opl|L CRn Rd CPNum| Op2 |1 CRm
Cond 1111 SW Nunber

The ARM Instruction Set - ARM University Program - V1.0

Data processing / PSR Transfer

Multiply

Long Multiply (v3M / v4 only)
Swap

L oad/Store Byte/Word

L oad/Store Multiple

Halfword transfer : Immediate offset (v4 only)
Halfword transfer: Register offset (v4 only)
Branch

Branch Exchange (v4T only)
Coprocessor datatransfer
Coprocessor data operation
Coprocessor register transfer

Software interrupt

B POWERED

Conditional Execution

* Most instruction sets only allow branchesto be executed conditionally.

* However by reusing the condition evaluation hardware, ARM effectively
Increases number of instructions.

¥ All instructions contain a condition field which determines whether the
CPU will execute them.

¥ Non-executed instructions soak up 1 cycle.

b Still have to complete cycle so as to allow fetching and decoding of
following instructions.

* Thisremovesthe need for many branches, which stall the pipeline (3
cyclesto refill).

¥ Allows very dense in-line code, without branches.

¥ The Time penalty of not executing several conditional instructionsis
frequently less than overhead of the branch
or subroutine call that would otherwise be needed.

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0

The Condition Field

31 28 24 20 16 12 8 4 0
T 1 T 1T 1T 1T 1T 1T 1T 1T 1T 1T T T T 1T 1T 1T 1T T T T T 1T 1T7T7T]
Cond I
—
0000 = EQ - Z st (equal) 1001 =LS- Cclear or Z (set unsigned

lower or same)

1010=GE- N setand V set, or N clear
and V clear (>or =)

1011 =LT-N setand V clear, or N clear
and V set (>)

1100 = GT - Z clear, and either N set and
V set, or N clear and V set (>)

1101 = LE - Z set, or N set and V clear,or
N clear and V set (<, or =)

1110 =AL - aways
1111 = NV - reserved.

0001 = NE - Z clear (not equal)

0010 =HS/CS - C set (unsigned
higher or same)

0011=LO/CC- Cclear (unsigned
lower)

0100 = MI -N set (negative)

0101 = PL - N clear (positive or
Zero)

0110=VS-V sat (overflow)
0111 =VC-V clear (no overflow)

1000 = HI - C set and Z clear

The ARM Instruction Set - ARM University Program - V1.0

B POWERED

Using and updating the
Condition Field

* Toexecute an instruction conditionally, ssmply postfix it with the
appropriate condition:

¥ For example an add instruction takes the form:

DADD r0,r1,r2 , r0O =rl1l + r2 (ADDAL)
¥ To executethisonly if the zero flag is set:
DADDEQ r0,r1,r2 - If zero flag set thenE

... ro=r1+r2

* By default, data processing oper ations do not affect the condition flags
(apart from the comparisons wherethisisthe only effect). To causethe
condition flags to be updated, the S bit of the instruction needsto be set
by postfixing the instruction (and any condition code) with an G8Q

¥ For example to add two numbers and set the condition flags:
DADDS rO,rl1,r2 , ro=rl +r2
, ... and set flags

B B POWERED

The ARM Instruction Set - ARM University Program - V1.0

Branch instructions (1)

* Branch: B{ <cond>} | abel

* Branch with Link : BL{ <cond>} sub _routine_| abel
31 28 27 25 24 23 0
-y 1l - rrrrrrrtrrr 1t > 17ttt T T 1T 17 1711971
Cond 1 0 1L Offset

e — Link bit 0=Branch

1 = Branch with link
Condition field
* Theoffset for branch instructionsiscalculated by the assembler:

¥ By taking the difference between the branch instruction and the
target address minus 8 (to allow for the pipeline).

¥ Thisgivesa 26 bit offset which isright shifted 2 bits (as the
bottom two bits are always zero as instructions are word B

aligned) and stored into the instruction encoding.
¥ Thisgivesarangeof ! 32 Mbytes.
ARM.: I

B POWERED

The ARM Instruction Set - ARM University Program - V1.0

Branch instructions (2)

* When executing theinstruction, the processor :
¥ shifts the offset left two bits, sign extends it to 32 bits, and adds it to PC.

* Execution then continues from the new PC, once the pipeline has been
refilled.

* The" Branch with link" instruction implements a subroutine call by
writing PC-4 into the LR of the current bank.

¥ 1.e. the address of the next instruction following the branch with link
(alowing for the pipeline).

* Toreturn from subroutine, smply need to restorethe PC from the LR:
¥ MOV pc, Ir
¥ Again, pipeline hasto refill before execution continues.

* The" Branch" instruction does not affect L R.

* Note: Architecture4T offersafurther ARM branch instruction, BX
¥ See Thumb Instruction Set Module for details.

(=]
w
&
(AT}
=
=)
o
|

The ARM Instruction Set - ARM University Program - V1.0 ARM 0

™

18

Data processing Instructions

* Largest family of ARM instructions, all sharing the same instruction
format.

* Contains:

e Arithmetic operations

e Comparisons (no results - just set condition codes)

e Logical operations

e Data movement between registers
* Remember, thisisaload / store ar chitecture

e These instruction only work on registers, NOT memory.
* They each perform a specific operation on one or two oper ands.

» First operand always a register - Rn

e Second operand sent to the ALU via barrel shifter.
* Wewill examinethe barrel shifter shortly.

The ARM Instruction Set - ARM University Program - V1.0

Arithmetic Operations

* Operationsare:

¥ ADD
¥ ADC
¥ SUB
¥ SBC
¥ RSB
¥ RSC
* Syntax:

operandl + operand2

operandl + operand2 + carry
operandl - operand2

operandl - operand2 + carry -1
operand2 - operandl

operand2 - operandl + carry - 1

¥ <Operation>{ <cond>}{S} Rd, Rn, Operand2

* Examples

¥ ADDrO, rl, r2
¥ SUBGT r3, r3, #1
¥ RSBLEST4, 15, #5

The ARM Instruction Set - ARM University Program - V1.0

B B POWERED
=

20

Comparisons

* Theonly effect of the comparisonsisto

¥ UPDATE THE CONDITION FLAGS. Thus no need to set S hit.

* Operationsare:

¥ CMP operandl - operand2, but result not written
¥ CMN operandl + operand2, but result not written
¥ TST operandl AND operand2, but result not written
¥ TEQ operandl EOR operand2, but result not written
* Syntax:
¥ <Operation>{<cond>} Rn, Operand2
* Examples:

¥ CMP ro, rl
¥ TSTEQ r2, #5

The ARM Instruction Set - ARM University Program - V1.0

B B POWERED
=

21

Logical Operations

* Qperationsare;

e AND operandl AND operand?2

e EOR operand] EOR operand?2

e ORR operand1 OR operand?2

e BIC operandl AND NOT operand?2 [ie bit clear]
* o Syntax:

e <Operation>{<cond>}{S} Rd, Rn, Operand2
* Examples:

e AND 10, rl, 2

e BICEQ 12,13, #7
e EORS rl.,r3.10

The ARM Instruction Set - ARM University Program - V1.0

22

Data Movement

* Qperationsare:

e MOV operand?2

e MVN NOT operand?

Note that these make no use of operandl.

* Syntax:

e <Operation>{<cond>}{S} Rd, Operand?2
* Examples:

e MOV 10, rl

e MOVS 12, #10

e MVNEQ rl#0

The ARM Instruction Set - ARM University Program - V1.0

(=]
w
&
(AT}
=
=)
o
|

™

O

23

Quiz #2

@ * Convert the GCD

X algorithm given in this
flowchart into

Yes @ 1) “Normal” assembler,
where only branches can
be conditional.

2) ARM assembler, where

all instructions are
Ves NO f:ondltl(.)nal, thus |
improving code density.

r0=r0-rl r1=rl-r0 * The only instructions you
need are CMP, B and SUB.

No

The ARM Instruction Set - ARM University Program - V1.0

Quiz #2 - Sample Solutions

(Nor malOAssembler

gcd cnp r0, rl ;
beq stop
blt |ess ;
sub r0, r0, r1
bal gcd

| ess sub r1, r1, rO
bal gcd

st op

reached the end?

if rO>rl
subtract rl1 fromrO

subtract rO fromrl

ARM Conditional Assembler

gcd cnp ro, rl
subgt r0, rO, rl
sublt r1, r1, rO
bne gcd

The ARM Instruction Set - ARM University Program - V1.0

1f rO>rl

subtract rl1 fromrO

‘el se subtract rO0 fromr1l
; reached the end?

(=]
w
&
(AT}
=
=)
o
|

The Barrel Shifter

* The ARM doesn® have actual shift instructions.

* |Instead it has a barrel shifter which provides a mechanism to carry out
shiftsas part of other instructions.

* Sowhat operations doesthe barrel shifter support?

The ARM Instruction Set - ARM University Program - V1.0

B B POWERED
=
O

26

Barrel Shifter - Left Shift

* Shiftsleft by the specified amount (multiplies by power s of two) e.g.
LSL #5 = multiply by 32

L ogical Shift Left (LSL)

CF [< Destination < 0

B B POWERED
=

The ARM Instruction Set - ARM University Program - V1.0

Barrel Shifter - Right Shifts

L ogical Shift Right

¥Shiftsright by the
gpecified amount
(divides by power s of
two) e.q.

L SR #5 = divide by 32

Arithmetic Shift Right

¥Shiftsright (divides by
power s of two) and
preservesthe sign bit,
for 2's complement
operations. e.g.

ASR #5 = divide by 32

L ogical Shift Right

..0 —> Destination

Arithmetic Shift Right

]

—> | Destination

Sign bit shifted in

The ARM Instruction Set - ARM University Program - V1.0

B B POWERED
=
O

28

Barrel Shifter - Rotations

Rotate Right (ROR)

¥Similar toan ASR but the
bitswrap around asthey
leave the L SB and appear as
the M SB.

e.g. ROR #5

¥Notethelast bit rotated is
also used asthe Carry Out.

Rotate Right Extended (RRX)

Rotate Right

—> Destination

¥This operation usesthe
CPSR C flag asa 33rd bit.

¥Rotatesright by 1 bit.
Encoded as ROR #0.

The ARM Instruction Set - ARM University Program - V1.0

Rotate Right through Carry

—> Destination ——>

O
a

B B POWERED
=
D ‘

29

Using the Barrel Shifter:
The Second Operand

Operand Operand < ——-

1 2
\
l \
\
Barrel \\
_Shifter \
\
! !
ALU
Result

The ARM Instruction Set - ARM University Program - V1.0

*

*

Register, optionally with shift
operation applied.

Shift value can be either be;
¥ 5 bit unsigned integer

¥ Specified in bottom byte of
another register.

*

| mmediate value
¥ 8 bit number

¥ Can be rotated right through
an even number of
positions.

¥ Assembler will calculate
rotate for you from
constant.

B POWERED

0 30

™

Second Operand :
Shifted Register

* Theamount by which theregister isto be shifted iscontained in

aelther:

¥ the immediate 5-bit field in the instruction
P NO OVERHEAD

b Shift isdone for free - executesin single cycle.

¥ the bottom byte of aregister (not PC)
b Then takes extra cycle to execute
P ARM doesn® have enough read portsto read 3 registers at

P Then same as on other processors where shift is

once.

separate instruction.

* |f no shift is specified then a default shift isapplied: LSL #0
¥ 1.e. barrel shifter has no effect on value in register.

The ARM Instruction Set - ARM University Program - V1.0

(=]
w
&
(AT}
=
=)
o
|

™

O

31

Second Operand :
Using a Shifted Register

* Using a multiplication instruction to multiply by a constant meansfir st
loading the constant into aregister and then waiting a number of

Inter nal cyclesfor theinstruction to complete.

* A moreoptimum solution can often be found by using some combination

of MOVs, ADDs, SUBs and RSBs with shifts.

¥ Multiplications by a constant equal to a ((power of 2) ! 1) can bedonein

one cycle.
* Example:rO=rl1*5
Example: rO=rl+ (r1l* 4)
« ADDrO,r1,rl, LSL #2
* Example: r2=r3* 105
Example: r2=r3* 15* 7
Example: r2=r3* (16-1) * (8- 1)
e RSBr2,r3,r3,LSL# ;r2=r3*15
e RSBr2,r2,r2, LSL #3 :r2=r2* 7

The ARM Instruction Set - ARM University Program - V1.0

(=]
w
&
(AT}
=
=)
o
|

g
™

32

Second Operand :
Immediate Value (1)

* Thereisno singleinstruction which will load a 32 bit immediate constant
Into aregister without performing a data load from memory.

¥ All ARM instructions are 32 bits long
¥ ARM instructions do not use the instruction stream as data.

* Thedata processing instruction format has 12 bits available for
operand?2

¥ If used directly thiswould only give a range of 4096.
* Instead it Isused to store 8 bit constants, giving a range of O - 255.

* These 8 bits can then berotated right through an even number of
positions (ie RORs by 0, 2, 4,..30).

¥ This gives amuch larger range of constants that can be directly loaded,
though some constants will still need to be loaded
from memory.

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0

Second Operand :
Immediate Value (2)

* This gives us:

¥ 0-255 [0 - Oxff]

¥ 256,260,264,..,1020 [0x100-0x3fc, step 4, 0x40-0xff ror 30]

¥ 1024,1040,1056,..,4080 [Ox400-0xff0, step 16, 0x40-0xff ror 28]

¥ 4096,4160, 4224,..,16320 [0x1000-0x3fc0, step 64, 0x40-0xff ror 26]

* These can be loaded using, for example:
¥ MQV r0, #0x40, 26 ; => MOV r0, #0x1000 (ie 4096)

* To make this easier, the assembler will convert to this form for us if
simply given the required constant:

¥ MOV r0, #4096 ; => MOV r0, #0x1000 (ie Ox40 ror 26)

* The bitwise complements can also be formed using MVN:
¥ MOV r0, #OxXFFFFFFFF ; assemblesto MV N r0, #0

* If the required constant cannot be generated, an error will
be reported.

The ARM Instruction Set - ARM University Program - V1.0

(=]
w
&
(AT}
=
=)
o
|

™

5 34

The ARM Instruction Set - ARM University Program - V1.0

Loading full 32 bit constants

Although the MOV/MVN mechansim will load a large range of constants
into a register, sometimes this mechansim will not generate the required
constant.

Therefore, the assembler also provides a method which will load ANY 32
bit constant:

¥ LDR rd, =nuneri ¢ const ant

If the constant can be constructed using either a MOV or MVN then this
will be the instruction actually generated.

Otherwise, the assembler will produce an LDR instruction with a PC-
relative address to read the constant from a literal pool.

¥ LDR r0, =0x42 ; generates MOV r0, #0x42

¥ LDR r0, =0x55555555; generate LDR r0,[pc, offset to |lit pool]

As this mechanism will always generate the best instruction for a given
case, it is the recommended way of loading constants.

Multiplication Instructions

* TheBasic ARM providestwo multiplication instructions.
* Multiply

¥ MUL{<cond>}{S} Rd, Rm, Rs , Rd=Rm* Rs
* Multiply Accumulate - does addition for free
¥ MLA{<cond>}{S} Rd, Rm, Rs,Rn ; Rd=(Rm* Rs) + Rn

* Restrictionson use:
¥ Rd and Rm cannot be the same register

b Can be avoid by swapping Rm and Rs around. This works because
multiplication is commutative.

¥ Cannot use PC.
These will be picked up by the assembler if overlooked.
* Operands can be considered signed or unsigned
¥ Up to user to interpret correctly.

(=]
w
&
(AT}
=
=)
o
|

The ARM Instruction Set - ARM University Program - V1.0 0

™

36

Multiplication Implementation

* The ARM makes use of Booth@ Algorithm to perform integer
multiplication.

*On non-M ARMsthisoperateson 2 bitsof Rsat atime.
» For each pair of bits this takes 1 cycle (plus 1 cycle to start with).

 However when there are no more 1°s left in Rs, the multiplication will
early-terminate.

* Example: Multiply 18 and -1: Rd=Rm* Rs

¢ r 71§yttt 1T p+tt 117§t 1P 1Pyt nbP 1D ypnP 1P 10§59 1T 1
Rm 18 [pooolooooloooolooooloooolooooloooiloo1ol 18 Rs

T T [T T T [T T T [T T T [T T T [T T T[T T T[T 1.1
Rs -1 12211121 2f1122f12212y2122j112112f22121f121172] -1 Rm

17 cycles 4 cycles

* Note: Compiler doesnot use early termination criteriato
decide on which order to place operands.

The ARM Instruction Set - ARM University Program - V1.0

Extended Multiply Instructions

* M variants of ARM cores contain extended multiplication

The ARM Instruction Set - ARM University Program - V1.0

hardware. This provides three enhancements:

¥ An 8 bit Booth@ Algorithmis used

D Multiplication is carried out faster (maximum for standard
Instructions is now 5 cycles).

¥ Early termination method improved so that now completes
multiplication when all remaining bit sets contain

b all zeroes (aswith non-M ARMS), or
b all ones.

Thus the previous example would early terminate in 2 cyclesin
both cases.

¥ 64 bit results can now be produced from two 32bit operands
b Higher accuracy.
D Pair of registers used to store result.

(=]
w
&
(AT}
=
=)
o
|

Multiply-Long and
Multiply-Accumulate Long

* Instructionsare
¥ MULL which gives RdHi,RdLo:=Rm*Rs
¥ MLAL which gives RdHi,RdL 0:=(Rm* Rs)+RdHi,RdLo

* However thefull 64 bit of the result now matter (lower precision
multiply instructions simply throws top 32bits away)

¥ Need to specify whether operands are signed or unsigned
* Therefore syntax of new instructions are:

¥ UMULL{<cond>}{S} RdLo,RdHi,Rm,Rs

¥ UMLAL{<cond>}{S} RdLo,RdHi,Rm,Rs

¥ SMULL{<cond>}{S} RdLo, RdHi, Rm, Rs

¥ SMLAL{<cond>}{S} RdLo, RdHi, Rm, Rs
* Not generated by the compiler.

Warning : Unpredictable on non-M ARM:s.

(=]
w
&
(AT}
=
=)
o
|

The ARM Instruction Set - ARM University Program - V1.0 0

™

Quiz #3

1. Specify instructions which will implement the following:
a)ro=16 D)ri=r0* 4
c)rO=rl/16 (rlsigned 2'scomp.) dri=r2*7

2. What will the following instructions do?
a) ADDSTrO, rl, r1, LSL #2 b) RSB r2, r1, #0

3. What does the following instruction sequence do?
ADD O, rl, rl, LSL #1
SUB 10, rO, r1, LSL #4
ADD rO, rO, r1, LSL #7

The ARM Instruction Set - ARM University Program - V1.0

B POWERED

0 40

™

Load / Store Instructions

* TheARM isaload / StoreArchitecture;
¥ Does not support memory to memory data processing operations,
¥ Must move data values into registers before using them.

* Thismight sound inefficient, but in practice isn®:
¥ Load data values from memory into registers.

¥ Process data in registers using a number of data processing
Instructions which are not slowed down by memory access.

¥ Store results from registers out to memory.

* The ARM hasthree sets of instructions which interact with main
memory. These are:

¥ Singleregister datatransfer (LDR / STR).
¥ Block datatransfer (LDM/STM).
¥ Single Data Swap (SWP).

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0 41

The ARM Instruction Set - ARM University Program - V1.0

Single reqgister data transfer

Thebasic load and storeinstructions are:
¥ Load and Store Word or Byte
D LDR/STR/LDRB/STRB

ARM Architecture Version 4 also adds support for halfwords and signed
data.

¥ Load and Store Halfword
b LDRH/STRH
¥ Load Signed Byte or Halfword - load value and sign extend it to 32 bits.
b LDRSB / LDRSH
All of these instructions can be conditionally executed by inserting the

appropriate condition code after STR /LDR.
¥ eg. LDREQB

Syntax:
¥ <LDRI|STR>{<cond>}{<size>} Rd, <address>

B B POWERED

Load and Store Word or Byte:
Base Register

* Thememory location to be accessed isheld in a baseregister

e STR 10, [rl]

e DR 12, |[rl]

ro
Source
Register L20X0
for STR
rl

Base
Register L[.0X200 1 ——> 0x200

The ARM Instruction Set - ARM University Pro

; Store contents of r0 to location pointed to
; by contents of rl.

; Load r2 with contents of memory location
; pointed to by contents of rl.

Memory

0x5

gram - V1.0

ﬁ

r2 Destination

O0X5 Register
for LDR

B B POWERED
=

43

Load and Store Word or Byte:
Offsets from the Base Regqister

* Aswell asaccessing the actual location contained in the baseregister,
these instructions can access a location offset from the baseregister
pointer.

* Thisoffset can be
¥ Anunsigned 12bit immediate value (ie O - 4095 bytes).
¥ A register, optionally shifted by an immediate value
* Thiscan be ather added or subtracted from the baseregister:
¥ Prefix the offset value or register with 3Q(default) or QO
* Thisoffset can be applied:
¥ before the transfer ismade: Pre-indexed addressing
b optionally auto-incrementing the base register, by postfixing the

Instruction with an @O

¥ after the transfer is made: Post-indexed addressing
b causing the base register to be auto-incremented.

B B POWERED

The ARM Instruction Set - ARM University Program - V1.0

Load and Store Word or Byte:
Pre-indexed Addressing

* Example: STRrO, [r1,#12] Memory 0 Source

0x5 Register

I
I for STR
Offset .

12 ——> 0x20c 0x5

rl T
Base
Register Lg0x200 - > 0x200

* Tostoreto location Ox1f4 instead use: STRrO, [r1,#-12]

* Toauto-increment base pointer to 0x20c use: STRr0, [rl, #12]!

* 1f r2 contains 3, access 0x20c by multiplying this by 4.
¥ STRO, [r1, r2, LSL #2]

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0 45

Load and Store Word or Byte:
Post-indexed Addressing

* Example: STRrO, [r1], #12 Memory

|
Updated 't Offset ' 0 Source

Base 0x20c B 12 | 0x5 I Register
Register | I | - I 0x20c / for STR
> 0x200 0x5
. rl
Original

|

Base 0x200 I
Register [—I !
* Toauto-increment the baseregister to location Ox1f4 instead use:

¥ STRO, [rl], #12

* |f r2 contains 3, auto-incremenet base register to 0x20c by multiplying
this by 4:

¥ STRO, [rl], r2, LSL #2

B POWERED

The ARM Instruction Set - ARM University Program - V1.0 0 46

™

Load and Stores
with User Mode Privilege

* When using post-indexed addressing, thereisa further form of
L oad/Store Word/Byte:

¥ <LDR|STR>{<cond>}{B} T Rd, <post_indexed address>

* When used in a privileged mode, this doesthe load/store with user mode
privilege.
¥ Normally used by an exception handler that is emulating a memory
access instruction that would normally execute in user mode.

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0 47

Example Usage of
Addressing Modes

* Imaginean array, thefirst element of which is pointed to by the contents

of r0.
: Memory

* |f wewant to access a particular element, element Offset
then we can use pre-indexed addressing: : : :
e rl is element we want. : . :
e LDR 2, [10,rl, LSL #2] 3 12
Pointer to 2 8
* | f we want to step through every Start of array 1 4
element of the array, for instance ro u—>o 0

to produce sum of elementsin the
array, then we can use post-indexed addressing within a loop:

e rl is address of current element (initially equal to r0).

e LDR 2, [rl],#4

Use afurther register to storethe address of final element,
so that the loop can be correctly ter minated.

The ARM Instruction Set - ARM University Program - V1.0

Offsets for Halfword and
Signed Halfword / Byte Access

* ThelLoad and Store Halfword and Load Signed Byte or Halfword
Instructions can make use of pre- and post-indexed addressing in much
the same way asthe basic load and store instructions.

* However the actual offset formats are more constrained:

¥ Theimmediate valueis limited to 8 bits (rather than 12 bits) giving an
offset of 0-255 bytes.

¥ The register form cannot have a shift applied to it.

B POWERED

The ARM Instruction Set - ARM University Program - V1.0 0 49

™

The ARM Instruction Set - ARM University Program - V1.0

Effect of endianess

The ARM can be set up to accessitsdata in either littleor big
endian format.

Little endian:

¥ Least significant byte of aword is stored in bits 0-7 of an addressed
word.

Big endian:

¥ Least significant byte of aword is stored in bits 24-31 of an
addressed word.

Thishasnoreal relevance unless data is stored as wor ds and then
accessed in smaller sized quantities (halfwords or bytes).

¥ Which byte/ halfword is accessed will depend on the endianess of

the system involved.
0

™

B POWERED

50

Endianess Example

r0 = 0x11223344

31 2423 1615 87 0

11|22|33|44

31 2423 1615 87 : 0 31 I 2423 1615 87 0

(1=0x100 | 11 22 | 33 | 44 Memory a4 33 ' 2 11| ri=ox100
Little-endian LDRB r2, [r1] Big-endian
31 2423 1615 87 0 31 2423 1615 87 0
00 ' 00! 00! 44 o0 ' 00 ! 00! 11
r2= 0x44 r2= 0x11

B POWERED

The ARM Instruction Set - ARM University Program - V1.0

Quiz #4

* Write asegment of code that add together elements x to x+(n-1) of an
array, wherethe element x=0isthefirst element of thearray.

* Each element of thearray isword sized (ie. 32 bits).
* The segment should use post-indexed addressing.
* At thestart of your segments, you should assumethat:

¥ 10 pointsto the start of the array.
¥rl=x

¥r2=n

n elements

ro D—)

The ARM Instruction Set - ARM University Program - V1.0

Elements

<— X+ (n-1)

< X +1
< X

(=]
w
&
(AT}
=
=)
o
|

™

O

52

Quiz #4 - Sample Solution

__ADD r0Q, r0, ri1, LSL#2 :
ADD r2, r0, r2, LSL#2 :
MOV rl, #O :

| oop
LDR r3, [r0], #4 ;
ADD r1, r1, r3 ;
CWMP r0, r2 ,
BLT | oop :

: on exit sumcontained inrl

The ARM Instruction Set - ARM University Program - V1.0

Set rO to address of el ement X
Set r2 to address of el enent n+1
Initialise counter

Access el ement and nove to next
Add contents to counter
Have we reached el enent x+n?

|f not - repeat for
next el enent

B POWERED

Block Data Transfer (1)

* ThelLoad and Store Multipleinstructions (LDM / STM) allow betweeen
1 and 16 registersto betransferred to or from memory.

* Thetransferred registerscan be either:
¥ Any subset of the current bank of registers (default).

¥ Any subset of the user mode bank of registers when in a priviledged
mode (postfix instruction with a @ Q.

31 28 27 24 23 22 21 20 19 16 15 0
R 1 IR Frr 1t 1P 11 17 © 1 1T 1T 11
Cond 1 0 O]PJU]SIWI]L Rn Register list
l I | | Il |]
Condition field Base register Each bit correspondsto a particular
. : register. For example:
Up/Down bit L oad/Store bit ¥Bit 0 set causes r0 to be transferred.

0 = Down; subtract offset from base 0 = Store to memory VBt O unset 0 not to be transferred
1=Up; add offset to base 1 = Load from memory Atll un Onceal}l’sgzj;‘str; r‘rc;u:t rgré erred.
Pre/Post indexing bit L—— Write- back bit transferred asthelist cannot be empty.
0 = Post; add offset after transfer, 0= no'wrlteuback'

1 =Pre; add offset before transfer 1 = write address into base

PSR and force user bit
0 = don@load PSR or force user mode
1 =load PSR or force user mode

B POWERED

The ARM Instruction Set - ARM University Program - V1.0

Block Data Transfer (2)

* Baseregister used to deter mine where memory access should occur.

¥ 4 different addressing modes allow increment and decrement inclusive or
exclusive of the base register location.

¥ Base register can be optionally updated following the transfer (by
appending it with an @O

¥ Lowest register number is aways transferred to/from lowest memory
location accessed.

* Theseinstructionsare very efficient for
¥ Saving and restoring context
b For this useful to view memory as a stack.
¥ Moving large blocks of data around memory
b For this useful to directly represent functionality of the instructions.

The ARM Instruction Set - ARM University Program - V1.0

B B POWERED
=
D ‘

55

Stacks

* A stack is an area of memory which grows as new data is ‘“pushed” onto
the “top” of it, and shrinks as data is “popped” off the top.

* Two pointers define the current limits of the stack.
¥ A base pointer

P used to point to the GrottomOof the stack (the first location).
¥ A stack pointer

P used to point the current QopOof the stack.

PUSH
{1, 2, 3; POP
>

SP—> 3 Resul t of

2 SP——> 2 pop = 3

SP 1 L
e
BASE 5 BASE——> BASE——>

The ARM Instruction Set - ARM University Program - V1.0

Stack Operation

* Traditionally, a stack grows down in memory, with the last QoushedO
value at the lowest address. The ARM also supports ascending stacks,
wher e the stack structure grows up through memory.

* Thevalue of the stack pointer can either:
¥ Point to the last occupied address (Full stack)
b and so needs pre-decrementing (ie before the push)
¥ Point to the next occupied address (Empty stack)
b and so needs post-decrementing (ie after the push)
* Thestack typeto be used isgiven by the postfix to the instruction:
¥ STMFD / LDMFD : Full Descending stack
¥ STMFA / LDMFA : Full Ascending stack.
¥ STMED / LDMED : Empty Descending stack
¥ STMEA / LDMEA : Empty Ascending stack
* Note: ARM Compiler will always use a Full descending stack.

B POWERED

D o7

™

The ARM Instruction Set - ARM University Program - V1.0

Stack Examples

STMFD sp!, STMED sp!, STMFA sp!, STMEA sp!,
{rO,r1,r3-r5} {rO,r1,r3-r5} {r0O,r1,r3-r5} {rO,r1,r3-r5}
0x418
5
r4 rs
r3 r4
rl r3
ro rl
Old SP—> Old SP—> 5 Old SP —> OldSP —{ 0 0x400
s r4
r4 r3
3 rl
rl ro
0
Ox3e8
The ARM Instruction Set - ARM University Program - V1.0 : 0 58

Stacks and Subroutines

* Oneuseof stacksisto createtemporary register workspace for
subroutines. Any registersthat are needed can be pushed onto the stack
at the start of the subroutine and popped off again at theend so asto
restorethem beforereturn tothecaller .

STMFD sp!, {r0-r12, Ir} , stack all registers

........ ;, and the return address

LDMFD sp!,{r0-r12, pc} , load all the registers
and return automatically

* Seethechapter on the ARM Procedure Call Standard in the SDT
Reference Manual for further details of register usage within
subroutines.

* |f the pop instruction also had the &Cbit set (using @ @ then the transfer
of the PC when in a priviledged mode would also cause the SPSR to be
copied into the CPSR (see exception handling module).

The ARM Instruction Set - ARM University Program - V1.0 0

™

B POWERED

59

Direct functionality of
Block Data Transfer

* When LDM / STM arenot being used to implement stacks, it isclearer to
specify exactly what functionality of the instruction is:

¥ 1.e. specify whether to increment / decrement the base pointer, before or
after the memory access.

* Inorder todothis, LDM / STM support afurther syntax in addition to
the stack one:

¥ STMIA / LDMIA : Increment After

¥ STMIB / LDMIB : Increment Before

¥ STMDA / LDMDA : Decrement After
¥ STMDB / LDMDB : Decrement Before

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0 60

Example: Block Copy

¥ Copy ablock of memory, which is an exact multiple of 12 words long
from the location pointed to by ri12 to the location pointed to by r13. r14
points to the end of block to be copied.

rl2 points to the start of the source data
rl4 points to the end of the source data
rl3 points to the start of the destination data

| oop LDM A r12!, {r0-r11} : load 48 bytes 3 —>
STMA 13!, {r0-r11} ; and store them (14 —> Increasing
CwvP ri2, ri4 ;, check for the end Memory
BNE | oop ;, and loop until done
r12—»

¥ Thisloop transfers 48 bytesin 31 cycles
¥ Over 50 Mbytes/sec at 33 MHz

61

B POWERED
D ‘

The ARM Instruction Set - ARM University Program - V1.0

-
=

Quiz #5

* Thecontentsof registersrOto r6 need to be swapped around thus:
¥ rO moved into r3
¥ rl1 movedinto r4
¥ r2 moved into r6
¥ r3moved into r5
¥ r4 moved into r0
¥ r5 moved intorl
¥ ré moved into r2

* Writea segment of code that uses full descending stack operationsto
carry thisout, and hencerequires no use of any other registersfor
temporary storage.

The ARM Instruction Set - ARM University Program - V1.0

B B POWERED
=

62

Quiz #5 - Sample Solution

STMFD sp!, LDMFD sp!, LDMFD sp!, LDMFD sp!,
{r0O-r6} {r3,r4,r6} {r5} {ro0-r2}
old SP > €i‘f>. |
ré re re
rs rs rs

r4 r4 @" r4
r2

ril

ro

ro rs r3 ro r4

r3 = = =
r4 =r1 ri =r5
re =r2 r2 =ro

B POWERED

The ARM Instruction Set - ARM University Program - V1.0

Swap and Swap Byte
Instructions

* Atomic operation of a memory read followed by a memory write
which moves byte or word quantities between registersand
memory.

* Syntax:
¥ SWP{<cond>}{B} Rd, Rm, [Rn]

an [J @, e

@/ o N O

* Thusto implement an actual swap of contents make Rd = Rm.
* Thecompiler cannot producethisinstruction.

(=]
w
&
(AT}
=
=)
o
|

The ARM Instruction Set - ARM University Program - V1.0

™

0 64

Software Interrupt (SWI)

31 28 27 24 23 0
L L rFrrrrr 1T+ r Tt 1ttt 1 1 17 717 17 7T17T 7191
Cond ‘ 1 111 | Comment field (ignored by Processor)

L |

Condition Field

* |n effect, a SWI isa user-defined instruction.

* |t causes an exception trap to the SWI hardware vector (thus causing a
change to supervisor mode, plusthe associated state saving), thus causing
the SWI exception handler to be called.

* The handler can then examine the comment field of the instruction to
decide what oper ation has been requested.

* By making use of the SWI mechansim, an operating system can
Implement a set of privileged operations which applicationsrunning in
user mode can request.

* See Exception Handling Module for further details.

The ARM Instruction Set - ARM University Program - V1.0

PSR Transfer Instructions

* MRSand M SR allow contents of CPSR/SPSR to betransferred from
appropriate statusregister to a general purposeregister.

¥ All of status register, or just the flags, can be transferred.

* Syntax:
¥ MRS{ <cond>} Rd, <psr> , Rd = <psr>
¥ MSR{ <cond>} <psr>, Rm , <psr> = Rm
¥ MSR{ <cond>} <psrf>, Rm , <psrf> = Rm
where

¥ <psr> = CPSR, CPSR all, SPSR or SPSR all
¥<psrf> = CPSR flg or SPSR fl g

* Also an immediate form
¥ MBR{ <cond>} <psrf>, #l medi at e

¥ Thisimmediate must be a 32-bit immediate, of which the 4
most significant bits are written to the flag bits.

The ARM Instruction Set - ARM University Program - V1.0

B B POWERED
=

66

Using MRS and MSR

* Currently reserved bits, may be used in future, therefore:
¥ they must be preserved when altering PSR
¥ the value they return must not be relied upon when testing other bits.

31 28 8 4 0

r 1t 11>t 1 > 11T T ° 17 17T 17 1T 1" T T 1
IN|z| clv IF“T M ode

* Thusread-modify-write strategy must be followed when modifying any
PSR:

¥ Transfer PSR to register using MRS

¥ Modify relevant bits

¥ Transfer updated value back to PSR using MSR
* Note:

¥ In User Mode, all bits can be read but only the flag bits can
be written to.

B B POWERED
=
D ‘

The ARM Instruction Set - ARM University Program - V1.0 67

Coprocessors

* The ARM architecture supports 16 coprocessors

* Each coprocessor instruction set occupies part of the ARM instruction
Set.

* Therearethreetypes of coprocessor instruction
¥ Coprocessor data processing
¥ Coprocessor (to/from ARM) register transfers
¥ Coprocessor memory transfers (load and store to/from memory)

* Assembler macros can be used to transform custom coprocessor
mneumonicsinto the generic mneumonics under stood by the processor .

* A coprocessor may be implemented
¥ Iin hardware
¥ In software (via the undefined instruction exception)
¥ 1n both (common cases in hardware, the rest in software)

The ARM Instruction Set - ARM University Program - V1.0

Coprocessor Data Processing

* Thisinstruction initiates a coprocessor operation
* Theoperation is performed only on internal coprocessor state

¥ For example, aFloating point multiply, which multiplies the contents of
two registers and stores the result in athird register

* Syntax:
¥ CDP{<cond>} <cp_nunp, <opc_1>, CRd, CRn, CRm { <opc_2>}

31 28 27 26 25 24 23 20 19 16 15 12 11 8 7 5 4 3 0
Cond 11 10| opc 1 CRn CRd cp_num J|opc_2|0 CRm

W I Destination Register Opcode T

Source Registers

Opcode
Condition Code Specifier

The ARM Instruction Set - ARM University Program - V1.0

Coprocessor Register
Transfers

* Thesetwo instructions move data between ARM registers and
COPr OCessor registers

¥ MRC : Move to Register from Coprocessor
¥ MCR : Move to Coprocessor from Register
* An operation may also be performed on the data asit istransferred

¥ For example aFloating Point Convert to Integer instruction can be
Implemented as a register transfer to ARM that also converts the data
from floating point format to integer format.

* Syntax
¥ <MRC| MCR>{ <cond>} <cp_nunw, <opc_1>, Rd, CRn, CRm <opc_2>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 5 4 3 0
Cond 111O0]opc_1 IL CRn Rd cp_num |jopc_ 2|1 CRm

T ‘ ARM Source/Dest Register Opcode ‘

Coprocesor Source/Dest Registers
Condition Code Specifier Transfer To/From Coprocessor
Opcode

The ARM Instruction Set - ARM University Program - V1.0 ARMa 0 70

™

Coprocessor Memory
Transfers (1)

* Load from memory to coprocessor registers
* Storeto memory from coprocessor registers.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0
Cond llOPUNV\lL Rn CRd |cp_num Of f set
Source/Dest Register Address Offset
Base Register
Load/Store

Condition Code Specifier Base Register Writeback
Transfer Length
Add/Subtract Offset

Pre/Post Increment

B POWERED

The ARM Instruction Set - ARM University Program - V1.0

Coprocessor Memory
Transfers (2)

* Syntax of theseissimilar toword transfers between ARM and memory:
¥ <LDC| STC>{<cond>}{<L>} <cp_nunp, CRd, <addr ess>
b PC relative offset generated if possible, else causes an error.
¥ <LDC STC>{<cond>}{<L>} <cp_nunp, CRd, <[Rn, of fset]{!}>
b Pre-indexed form, with optional writeback of the base register
¥ <LDC STC>{<cond>}{<L>} <cp_nunp, CRd, <[Rn], of f set >
b Post-indexed form

where

¥ <L> when present causes a QongOtransfer to be performed (N=1) else
causes a GhortOtransfer to be performed (N=0).

b Effect of thisis coprocessor dependant.

B POWERED

The ARM Instruction Set - ARM University Program - V1.0 0 72

™

Quiz #6

* Write a short code segment that performs a mode change by modifying
the contents of the CPSR

e The mode you should change to is user mode which has the value 0x10.

e This assumes that the current mode is a priveleged mode such as
supervisor mode.

e This would happen for instance when the processor is reset - reset code
would be run in supervisor mode which would then need to switch to
user mode before calling the main routine in your application.

* You will need to use MSR and MRS, plus 2 logical operations.

31 28 8 4 0

It 1 17 ° 1T 17 17 17 11T 1T 1T 17 17 17 1T 1T 1 T T 1
In|z| v IEIT

=
2

(=]
w
&
(AT}
=
=)
o
|

The ARM Instruction Set - ARM University Program - V1.0 0 73

™

Quiz #6 - Sample Solution

* Set up useful constants:

mmask EQU Ox1f
userm EQU 0x10

* Start off herein supervisor mode.
VRS r0, cpsr
BIC rO,r0, #nmmask
ORR rO0,r0, #userm
MSR cpsr, rO0

* End up herein user mode.

The ARM Instruction Set - ARM University Program - V1.0

mask to clear node bits
user node val ue

take a copy of the CPSR
cl ear the node bits
sel ect new node

wite back the nodifi ed
CPSR

74

Main features of the
ARM Instruction Set

* All instructions are 32 bits long.
* Most instructions execute in a single cycle.
* Every instruction can be conditionally executed.
* A load/store architecture
¥ Data processing instructions act only on registers
b Three operand format
B Combined ALU and shifter for high speed bit manipulation

¥ Specific memory access instructions with powerful auto-indexing
addressing modes.

b 32 bit and 8 bit data types
and also 16 bit data types on ARM Architecture v4.
b Fexible multiple register load and store instructions
* |nstruction set extension via Copr ocessors

B B POWERED
=

The ARM Instruction Set - ARM University Program - V1.0

