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T he Ada ptive Com munic ation Environm ent 
An introduction 
The Adaptive Communication Environment (ACE) is a widely-used, open-source object-
oriented toolkit written in C++ that implements core concurrency and networking 
patterns for communication software. ACE includes many components that simplify the 
development of communication software, thereby enhancing flexibility, efficiency, 
reliability and portability. Components in the ACE framework provide the following 
capabilities: 

!" Concurrency and synchronization. 
!" Interprocess communication  (IPC) 
!" Memory management. 
!" Timers  
!" Signals 
!" File system management 
!" Thread management  
!" Event demultiplexing and handler dispatching. 
!" Connection establishment and service initialization. 
!" Static and dynamic configuration and reconfiguration of software. 
!" Layered protocol construction and stream-based frameworks. 
!" Distributed communication services –naming, logging, time synchronization, 

event routing and network locking. etc. 
The framework components provided by ACE are based on a family of patterns that have 
been applied successfully to thousands of commercial systems over the past decade.  
Additional information on these patterns is available in the book Pattern-Oriented Software 
Architecture: Patterns for Concurrent and Networked Objects, written by Douglas C. 
Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann and published in 2000 by Wiley 
and Sons. 

Chapter 
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T h e  A C E  A r c hi t e c t ur e  

ACE has a layered design, with the following three basic layers in its architecture: 
!" The operating system (OS) adaptation layer 
!" The C++ wrapper façade layer 
!" The frameworks and patterns layer 

Each of these layers is shown in the figure below and described in the following sections. 

 

T h e O S A d a pt a tion L a yer 

The OS Adaptation is a thin layer of C++ code that sits between the native OS APIs and 
the rest of ACE. This layer shields the higher layers of ACE from platform dependencies, 
which makes code written with ACE relatively platform independent. Thus, with little or 
no effort developers can move an ACE application from platform to platform.  
The OS adaptation layer is also the reason why the ACE framework is available on so 
many platforms. A few of the OS platforms on which ACE is available currently, include;  
real-time operating systems, (VxWorks, Chorus, LynxOS, RTEMS, OS/9, QNX 
Neutrion, and pSoS), most versions of UNIX (SunOS 4.x and 5.x; SGI IRIX 5.x and 6.x; 
HP-UX 9.x, 10.x and 11.x; DEC UNIX 3.x and 4.x; AIX 3.x and 4.x; DG/UX; Linux; 
SCO; UnixWare; NetBSD and FreeBSD), Win32 (WinNT 3.5.x, 4.x, Win95 and WinCE 
using MSVC++ and Borland C++), MVS OpenEdition, and Cray UNICOS. 
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T h e C ++ Wra pp er F a c a d e L a yer 

The C++ wrapper facade layer includes C++ classes that can be used to build highly 
portable and typesafe C++ applications. This is the largest part of the ACE toolkit and 
includes approximately 50% of the total source code. C++ wrapper classes are available 
for:  

!" Concurrency and synchronization – ACE provides several concurrency and 
synchronization wrapper façade classes that abstract the native OS multi-threading and 
multi-processing API. These wrapper facades encapsulate synchronization primitives, 
such as semaphores, file locks, barriers, and dondition variables. Higher-level 
synchronization utilities, such as Guards, are also available. All these primitives share 
similar interfaces and thus are easy to use and substitute for one another. 

!" IPC components – ACE provides several C++ wrapper façade classes that encapsulate 
different inter-process communication (IPC) interfaces that are available on different 
operating systems. For example, wrapper façade classes are provided to encapsulate IPC 
mechanisms, such as BSD Sockets, TLI, UNIX FIFOs, STREAM Pipes, Win32 Named 
Pipes. ACE also provides message queue classes, and wrapper facades for certain real-
time OS-specific message queues. 

!" Memory management components – ACE includes classes to allocate and deallocate 
memory dynamically, as well as pre-allocation of dynamic memory. This memory is then 
managed locally with the help of management classes provided in ACE. Fine-grain 
memory management is necessary in most real-time and embedded systems. There are 
also classes to flexibly manage inter-process shared memory. 

!" Timer classes – Various classes are available to handle scheduling and canceling of 
timers. Different varieties of timers in ACE use different underlying mechanisms (e.g., 
heaps, timer wheels, or ordered lists) to provide varying performance characteristics.  
Regardless of which underlying mechanism is used, however, the interface to these classes 
remains the same, which makes it easy to use any timer implementations. In addition to 
these timer classes, wrapper façade classes are available for high-resolution timers (which 
are available on some platforms, such as VxWorks, Win32/Pentium, AIX and Solaris) and 
Profile Timers. 

!" Container classes – ACE also includes several portable STL-type container classes, such 
as Map, Hash_Map, Set, List, and Array. 

!" Signal handling – ACE provides wrapper façade classes that encapsulate the OS-specific 
signal handling interface. These classes simplify the installation and removal of signal 
handlers and allow the installation of several handlers for one signal. Also available are 
signal guard classes that can be used to selectively disable some or all signals in the scope 
of the guard. 

!" Filesystem components – ACE contains classes that wrap the filesystem API. These 
classes include wrappers for file I/O, asynchronous file I/O, file locking, file streams, file 
connection, etc.  
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!" Thread management – ACE provides wrapper facades classes to create and manage 
threads. These wrappers also encapsulate the OS-specific threading API and can be used 
to provide advanced functionality, such as thread-specific storage. 

T h e A C E Fr a m e w or k C o m pon e nts 

The ACE framework components are the highest-level building blocks available in ACE. 
These framework components are based on several design patterns specific to the 
communication software domain. A designer can use these framework components to 
build systems at a much higher level than the native OS API calls. These framework 
components are therefore not only useful in the implementation stage of development, 
but also at the design stage, since they provide a set of micro-architectures and pattern 
langauges for the system being built. This layer of ACE contains the following 
framework components: 

!" Event handling framework – Most communication software includes a large amount of 
code to handle various types of events, such as I/O-based, timer-based, signal-based, and 
synchronization-based events. These events must be efficiently de-multiplexed, dispatched 
and handled by the software. Unfortunately, developers historically end up re-inventing 
the wheel by writing this code repeatedly since their event de-multiplexing, dispatching, 
and handling code were tightly coupled and could not be used independent of one another. 
ACE includes a framework component called the Reactor to solve this problem. The 
Reactor provides code for efficient event de-multiplexing and dispatching, which de-
couples the event demultiplexing and dispatch code from the handling code, thereby 
enhancing re-usability and flexibility. 

!" Connection and service initialization components – ACE includes Connector and 
Acceptor components that decouple the initiation of a connection from the service 
performed by the application after the connection has been established. This component is 
useful in application servers that receive a large number of connection requests. The 
connections are initialized first in an application-specific manner and then each connection 
can be handled differently via the appropriate handling routine. This decoupling allows 
developers to focus on the handling and initialization of connections separately. Therefore, 
if at a later stage developers determine the number of connection requests are different 
than they estimated, they can chose to use a different set of initialization policies (ACE 
includes a variety of default policies) to achieve the required level of performance. 

!" Stream framework – The ACE Streams framework simplifies the development of 
software that is intrinsically layered or hierarchic. A good example is the development of 
user-level protocol stacks that are composed of several interconnected layers. These layers 
can largely be developed independently from each other. Each layer processes and 
changes the data as it passes through the stream and then passes it along to the next layer 
for further processing. Since layer can be designed and configured independently of each 
other they are more easily re-used and replaced. 

!" Service Configuration framework – Another problem faced by communication software 
developers is that software services often must be configured at installation time and then 
be reconfigured at run-time. The implementation of a certain service in an application may 
require change and thus the application must be reconfigured with the update service. The 
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ACE Service Configurator framework supports dynamic initialization, suspend, 
resumption, reconfiguration, and termination of services provided by an application. 

Although there have been rapid advances in the field of computer networks, the 
development of communication software has become more harder. Much of the effort 
expended on developing communication software involves “re-inventing the wheel,” 
where components that are known to be common across applications are re-written rather 
then re-used. ACE addresses this problem by integrating common components, micro-
architectures, and instances of pattern languges that are known to be reusable in the 
network and systems programming domains. Thus, application developers can download 
and learn ACE, pick and choose the components needed to use in their applications, and 
build and integrate concurrent networking applications quickly. In addition to capturing 
simple building blocks in its C++ wrapper facade layer, ACE includes larger framework 
components that capture proven micro-architectures and pattern languages that are useful 
in the realm of communication software. 
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IPC SAP 
Interprocess communication Service Access Point wrappers 
Sockets, TLI, STREAM pipes and FIFO’s provide a wide range of interfaces for 
accessing both local and global IPC mechanisms. However, there are many problems 
associated with these non-uniform interfaces. Problems such as lack of type safety and 
multiple dimensions of complexity lead to problematic and error-prone programming.  
The IPC SAP class category in ACE provides a uniform hierarchic category of classes 
that encapsulate these tedious and error-prone interfaces. IPC SAP is designed to improve 
the correctness, ease of learning, portability and reusability of communication software 
while maintaining high performance. 

C a t e g ori e s of  c l a s s e s in IP C  S A P 

 

 
 

 

 

 

 

The IPC SAP classes are divided into four major categories based on the different 
underlying IPC interface they are using. The class diagram above illustrates this division. 
The ACE_IPC_SAP class provides a few functions that are common to all IPC interfaces. 
From this class, four different classes are derived. Each class represents a category of IPC 
SAP wrapper classes that ACE contains. These classes encapsulate functionality that is 
common to a particular IPC interface. For example, the ACE_SOCK class contains 
functions that are common to the BSD sockets programming interface whereas ACE_TLI 
wraps the TLI programming interface. 

Chapter 
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Underneath each of these four classes lies a whole hierarchy of wrapper classes that 
completely wrap the underlying interface and provide highly reusable, modular, safe and 
easy-to-use wrapper classes. 

T h e  S o c k e t s C l a s s C a t e g or y (A C E_S O C K) 

The classes in this category all lie under the ACE_SOCK class. This category provides an 
interface to the Internet domain and UNIX domain protocol families using the BSD 
sockets programming interface. The family of classes in this category are further 
subdivided as: 

!" Dgram Classes and Stream Classes: The Dgram classes are based on the UDP 
datagram protocol and provide unreliable connectionless messaging functionality. 
The Stream Classes, on the other hand, are based on the TCP protocol and provide 
connection-oriented messaging. 

!" Acceptor, Connector Classes and Stream Classes: The Acceptor and Connector 
classes are used to passively and actively establish connections, respectively. The 
Acceptor classes encapsulates the BSD accept() call and the Connector 
encapsulates the BSD connect() call. The Stream classes are used AFTER a 
connection has been established to provide bi-directional data flow and contain 
send and receive methods. 

The Table below details the classes in this category and what their responsibilities are: 
Class Name Responsibility 

ACE_SOCK_Acceptor Used for passive connection establishment based on the BSD 
accept() and listen() calls. 

ACE_SOCK_Connector Used for active connection establishment based on the BSD 
connect() call. 

ACE_SOCK_Dgram Used to provide UDP (User Datagram Protocol) based 
connectionless messaging services. Encapsulates calls such as 
sendto() and receivefrom()  and provides a simple send() and 
recv() interface. 

ACE_SOCK_IO Used to provide a connection-oriented messaging service. 
Encapsulates calls such as send(), recv() and write(). This 
class is the base class for the ACE_SOCK_Stream and 
ACE_SOCK_CODgram classes. 

ACE_SOCK_Stream Used to provide TCP (Transmission Control Protocol) -based 
connection-oriented messaging service. Derives from 
ACE_SOCK_IO and provides further wrapper methods. 

ACE_SOCK_CODgram Used to provide a connected datagram abstraction. Derives 
from ACE_SOCK_IO and includes an open() method, which 
causes a bind() to the local address specified and connects to 
the remote address using UDP. 

ACE_SOCK_Dgram_Mcast Used to provide a datagram-based multicast abstraction. 
I l d h d f b ibi l i ll
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Includes methods for subscribing to a multicast group as well 
as sending and receiving messages. 

ACE_SOCK_Dgram_Bcast Used to provide a datagram-based broadcast abstraction. 
Includes methods to broadcast datagram message to all 
interfaces in a subnet. 

 
In the following sections, we will illustrate how the IPC_SAP wrapper classses are used 
directly to handle interprocess communication. Remember that this is just the tip of the 
iceberg in ACE. All the good pattern-oriented tools come in later chapters of this tutorial. 
 

U sing S tr e a m s in A C E 

The Streams wrappers in ACE provide connection-oriented communication. The Streams 
data transfer wrapper classes include ACE_SOCK_Stream and ACE_LSOCK_Stream, 
which wrap the TCP/IP and UNIX domain sockets protocols data transfer functionality, 
respectively. The connection establishment classes include ACE_SOCK_Connector and 
ACE_SOCK_Acceptor for TCP/IP, and ACE_LSOCK_Connector and 
ACE_LSOCK_Acceptor for UNIX domain sockets.  
The Acceptor class is used to passively accept connections (using the BSD accept() call) 
and the Connector class is used to actively establish connections (using the BSD 
connect() call).  
The following example illustrates how acceptors and connectors are used to establish a 
connection. This connection is then used to transfer data using the stream data transfer 
classes.  
 
Example 1

#include "ace/SOCK_Acceptor.h"

#include "ace/SOCK_Stream.h"

#define SIZE_DATA 18

#define SIZE_BUF 1024

#define NO_ITERATIONS 5

class Server{

public:

Server (int port):

server_addr_(port),peer_acceptor_(server_addr_)

{

data_buf_= new char[SIZE_BUF];

}

//Handle the connection once it has been established. Here the

//connection is handled by reading SIZE_DATA amount of data from the

//remote and then closing the connection stream down.

int handle_connection()

{

// Read data from client
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for(int i=0;i<NO_ITERATIONS;i++){

int byte_count=0;

if( (byte_count=new_stream_.recv_n (data_buf_, SIZE_DATA, 0))==-1)

ACE_ERROR ((LM_ERROR, "%p\n", "Error in recv"));

else{

data_buf_[byte_count]=0;

ACE_DEBUG((LM_DEBUG,"Server received %s \n",data_buf_));

}

}

// Close new endpoint

if (new_stream_.close () == -1)

ACE_ERROR ((LM_ERROR, "%p\n", "close"));

return 0;

}

//Use the acceptor component peer_acceptor_ to accept the connection

//into the underlying stream new_stream_. After the connection has been

//established call the handle_connection() method.

int accept_connections ()

{

if (peer_acceptor_.get_local_addr (server_addr_) == -1)

ACE_ERROR_RETURN ((LM_ERROR,"%p\n","Error in get_local_addr"),1);

ACE_DEBUG ((LM_DEBUG,"Starting server at port %d\n",

server_addr_.get_port_number ()));

// Performs the iterative server activities.

while(1){

ACE_Time_Value timeout (ACE_DEFAULT_TIMEOUT);

if (peer_acceptor_.accept (new_stream_, &client_addr_, &timeout)== -1){

ACE_ERROR ((LM_ERROR, "%p\n", "accept"));

continue;

}

else{

ACE_DEBUG((LM_DEBUG,

"Connection established with remote %s:%d\n",

client_addr_.get_host_name(),client_addr_.get_port_number()));

//Handle the connection

handle_connection();

}

}

private:

char *data_buf_;

ACE_INET_Addr server_addr_;

ACE_INET_Addr client_addr_;

ACE_SOCK_Acceptor peer_acceptor_;

ACE_SOCK_Stream new_stream_;

};

int main (int argc, char *argv[])

{
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if(argc<2){

ACE_ERROR((LM_ERROR,"Usage %s <port_num>", argv[0]));

ACE_OS::exit(1);

}

Server server(ACE_OS::atoi(argv[1]));

server.accept_connections();

}

 
In the example above, a passive server is created which listens for incoming client 
connections. After a connection is established the server receives data from the client and 
closes the connection down. The Server class represents this server.  
The Server class contains a method accept_connections() which uses an acceptor, i.e. 
ACE_SOCK_Acceptor, to accept the connection “into” the ACE_SOCK_Stream 
new_stream_. This is done by calling accept() on the acceptor and passing in the 
stream which we want it to accept the connection “into”.  Once a connection has been 
established into a stream, then the stream wrappers, send() and recv() methods can be 
used to send and receive data over the newly established link. The accept() method for 
the acceptor is also passed in a blank ACE_INET_Addr, which it sets to the address of the 
remote machine that had initiated the connection.  
After the connection has been established, the server calls the handle_connection() 
method, which proceeds to read a pre-known word from the client and then closes down 
the stream. This may be a non-realistic scenario for a server which handles multiple 
clients. What would probably happen in a real world situation is that the connection 
would be handled in either a separate thread or process. How such multi-threading and 
multi-process type handling is done will be illustrated time and again in subsequent 
chapters.  
The connection is closed down by calling the close() method on the stream. The method 
will release all socket resources and terminate the connection.  
The next example illustrates how to use a Connector in conjunction with the Acceptor 
shown in the previous example. 
Example 2

#include "ace/SOCK_Connector.h"

#include "ace/INET_Addr.h"

#define SIZE_BUF 128

#define NO_ITERATIONS 5

class Client{

public:

Client(char *hostname, int port):remote_addr_(port,hostname)

{

data_buf_="Hello from Client";

}

//Uses a connector component `connector_’ to connect to a

//remote machine and pass the connection into a stream

//component client_stream_

int connect_to_server()
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{
// Initiate blocking connection with server.

ACE_DEBUG ((LM_DEBUG, "(%P|%t) Starting connect to %s:%d\n",

remote_addr_.get_host_name(),remote_addr_.get_port_number()));

if (connector_.connect (client_stream_, remote_addr_) == -1)

ACE_ERROR_RETURN ((LM_ERROR,"(%P|%t) %p\n","connection failed"),-1);

else

ACE_DEBUG ((LM_DEBUG,"(%P|%t) connected to %s\n",

remote_addr_.get_host_name ()));

return 0;

}

//Uses a stream component to send data to the remote host.

int send_to_server()

{

// Send data to server

for(int i=0;i<NO_ITERATIONS; i++){

if (client_stream_.send_n (data_buf_, ACE_OS::strlen(data_buf_)+1, 0) == -1){

ACE_ERROR_RETURN ((LM_ERROR,"(%P|%t) %p\n","send_n"),0);

break;

}

}

//Close down the connection

close();

}

//Close down the connection properly.

int close()

{

if (client_stream_.close () == -1)

ACE_ERROR_RETURN ((LM_ERROR,"(%P|%t) %p\n","close"),-1);

else

return 0;

}

private:

ACE_SOCK_Stream client_stream_;

ACE_INET_Addr remote_addr_;

ACE_SOCK_Connector connector_;

char *data_buf_;

};

int main (int argc, char *argv[])

{

if(argc<3){

ACE_DEBUG((LM_DEBUG,”Usage %s <hostname> <port_number>\n”, argv[0]));

ACE_OS::exit(1);

}

Client client(argv[1],ACE_OS::atoi(argv[2]));

client.connect_to_server();

client.send_to_server();

}
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The above example illustrates a client that actively connects to the server which was 
described in Example 1. After establishing a connection, it sends a single string of data to 
the server several times and closes down the connection.  
The client is represented by a single Client class. Client contains a connect_to_server() 
and a send_to_server() method.  
The connect_to_server() method uses a Connector, connector_, of type 
ACE_SOCK_Connector, to actively establish a connection. The connection setup is done 
by calling the connect() method on the Connector connector_, passing it the 
remote_addr_ of the machine we wish to connect to, and an empty ACE_SOCK_Stream 
client_stream_ to establish the connection “into”. The remote machine is specified in the 
runtime arguments of the example. Once the connect() method returns successfully, the 
stream can be used to send and receive data over the newly established link. This is 
accomplished by using the send() and recv() family of methods available in the 
ACE_SOCK_Stream wrapper class. 
In the example, once the connection has been established, the send_to_server() method is 
called to send a single string to the server NO_ITERATIONS times. As mentioned before, 
this is done by using the send() methods of the stream wrapper class. 
 

U sing D a t a gra m s in A C E 

The Datagrams wrapper classes in ACE are ACE_SOCK_Dgram and 
ACE_LSOCK_Dgram. These wrappers include methods to send and receive datagrams 
and wrap the non-connection-oriented UDP and UNIX domain sockets protocol. Unlike 
the Streams wrapper, these wrappers wrap a non-connection-oriented protocol. This 
means that there are no acceptors and connectors that are used to “setup” a connection. 
Instead, in this case, communication is through a series of sends and receives. Each 
send() indicates the destination remote address as a parameter.  The following example 
illustrates how datagrams are used with ACE. The example uses the ACE_SOCK_Dgram 
wrapper (i.e., the UDP wrapper). The ACE_LSOCK_Dgram, which wraps UNIX domain 
datagrams, could also be used. The usage of both wrappers is very similar, the only 
difference is that local datagrams use the ACE_UNIX_Addr class for addresses instead of 
ACE_INET_Addr. 

 
Example 3

//Server

#include "ace/OS.h"

#include "ace/SOCK_Dgram.h"

#include "ace/INET_Addr.h"

#define DATA_BUFFER_SIZE 1024

#define SIZE_DATA 19

class Server{

public:

Server(int local_port)
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:local_addr_(local_port),local_(local_addr_)
{

data_buf = new char[DATA_BUFFER_SIZE];

}

//Expect data to arrive from the remote machine. Accept it and display

//it. After receiving data, immediately send some data back to the

//remote.

int accept_data(){

int byte_count=0;

while( (byte_count=local_.recv(data_buf,SIZE_DATA,remote_addr_))!=-1){

data_buf[byte_count]=0;

ACE_DEBUG((LM_DEBUG, "Data received from remote %s was %s \n"

,remote_addr_.get_host_name(), data_buf));

ACE_OS::sleep(1);

if(send_data()==-1) break;

}

return -1;

}

//Method used to send data to the remote using the datagram component

//local_

int send_data()

{

ACE_DEBUG((LM_DEBUG,"Preparing to send reply to client %s:%d\n",

remote_addr_.get_host_name(),remote_addr_.get_port_number()));

ACE_OS::sprintf(data_buf,"Server says hello to you too");

if(

local_.send(data_buf, ACE_OS::strlen(data_buf)+1,remote_addr_)==-1)

return -1;

else

return 0;

}

private:

char *data_buf;

ACE_INET_Addr remote_addr_;

ACE_INET_Addr local_addr_;

ACE_SOCK_Dgram local_;

};

int main(int argc, char *argv[])

{

if(argc<2){

ACE_DEBUG((LM_DEBUG,"Usage %s <Port Number>", argv[0]));

ACE_OS::exit(1);

}

Server server(ACE_OS::atoi(argv[1]));

server.accept_data();

}
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The above code is for a simple server that expects a client application to send it a 
datagram on a known port. The datagram contains a fixed and pre-determined amount of 
data in it. The server, on reception of this data, proceeds to send a reply back to the client 
that originally sent the data.  
The single class Server contains an ACE_SOCK_Dgram named local_ as a private 
member which it uses both to receive and send data. The Server instantiates local_  in 
its constructor, with a known ACE_INET_Addr (local host with known port) so the client 
can locate it and send messages to it.  
The class contains two methods: accept_data(), used to receive data from the client (uses 
the wrappers recv() call) and send_data(), used to send data to the remote client (uses the 
wrappers send() call). Notice that the underlying calls for both the send() and receive()of 
the local_ wrapper class wrap the BSD sendto() and recvfrom() calls and have a 
similar signature.  
The main function just instantiates an object of type server and calls the accept_data() 
method on it which waits for data from the client. When it gets the data it is expecting it 
calls send_data() to send a reply message back to the client. This goes on forever until 
the client is killed. 
The corresponding client code is very similar:  
Example 4

//Client

#include "ace/OS.h"

#include "ace/SOCK_Dgram.h"

#include "ace/INET_Addr.h"

#define DATA_BUFFER_SIZE 1024

#define SIZE_DATA 28

class Client{

public:

Client(const char * remote_host_and_port)

:remote_addr_(remote_host_and_port),

local_addr_((u_short)0),local_(local_addr_)

{

data_buf = new char[DATA_BUFFER_SIZE];

}

//Receive data from the remote host using the datgram wrapper `local_’.

//The address of the remote machine is received in `remote_addr_’

//which is of type ACE_INET_Addr. Remember that there is no established

//connection.

int accept_data()

{

if(local_.recv(data_buf,SIZE_DATA,remote_addr_)!=-1){

ACE_DEBUG((LM_DEBUG, "Data received from remote server %s was: %s \n" ,

remote_addr_.get_host_name(), data_buf));

return 0;

}

else

return -1;
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}
//Send data to the remote. Once data has been sent wait for a reply

//from the server.

int send_data()

{

ACE_DEBUG((LM_DEBUG,"Preparing to send data to server %s:%d\n",

remote_addr_.get_host_name(),remote_addr_.get_port_number()));

ACE_OS::sprintf(data_buf,"Client says hello");

while(local_.send(data_buf,ACE_OS::strlen(data_buf),remote_addr_)!=-1){

ACE_OS::sleep(1);

if(accept_data()==-1)

break;

}

return -1;

}

private:

char *data_buf;

ACE_INET_Addr remote_addr_;

ACE_INET_Addr local_addr_;

ACE_SOCK_Dgram local_;

};

int main(int argc, char *argv[])

{

if(argc<2){

ACE_OS::printf("Usage: %s <hostname:port_number> \n", argv[0]);

ACE_OS::exit(1);

}

Client client(argv[1]);

client.send_data();

}

 

U sing Mult ic a st w ith A C E 

You will find, on several occasions, that the same message has to be sent to a multitude 
of clients or servers in your distributed system. For example, time adjustment updates or 
other periodic information may have to be broadcasted to a particular set of terminals. 
Multicasting is used to address this problem. It allows broadcasting, not to all terminals, 
but to a certain subset or group of terminals. You can therefore think of multi-cast as a 
kind of controlled broadcast mechanism. Multicasting is a feature which is now available 
on most modern operating systems. 
ACE provides for an unreliable multicast wrapper ACE_SOCK_Dgram_Mcast that 
allows programmers to send datagram messages to a controlled group, called a multicast 
group. This group is identified by a unique multicast address.   
Clients and Servers that are interested in receiving broadcasts on this address must 
subscribe to it. (also called subscribing to the multicast group).  All the processes that 
have subscribed to the multicast group will then receive any datagram message sent to the 
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group. An application that wishes to send messages to the multicast group, but not listen 
to them, does not have to subscribe to the multicast group. In fact, such a sender can use 
the plain old ACE_SOCK_Dgram wrapper to send messages to the multicast address. 
The message sent will than be received by the entire multicast group.  
In ACE, multicast functionality is encapsulated in ACE_SOCK_Dgram_Mcast. This 
includes functions to subscribe, unsubscribe and receive on the multicast group.  
The following examples illustrate how multicasting can be used in ACE. 
 
Example 5

#include "ace/SOCK_Dgram_Mcast.h"

#include "ace/OS.h"

#define DEFAULT_MULTICAST_ADDR "224.9.9.2"

#define TIMEOUT 5

//The following class is used to receive multicast messages from

//any sender.

class Receiver_Multicast{

public:

Receiver_Multicast(int port):

mcast_addr_(port,DEFAULT_MULTICAST_ADDR),remote_addr_((u_short)0)

{

// Subscribe to multicast address.

if (mcast_dgram_.subscribe (mcast_addr_) == -1){

ACE_DEBUG((LM_DEBUG,"Error in subscribing to Multicast address \n"));

exit(-1);

}

}

~Receiver_Multicast()

{

if(mcast_dgram_.unsubscribe()==-1)

ACE_DEBUG((LM_ERROR,"Error in unsubscribing from Mcast group\n"));

}

//Receive data from someone who is sending data on the multicast group

//address. To do so it must use the multicast datagram component

//mcast_dgram_.

int recv_multicast()

{

//get ready to receive data from the sender.

if(mcast_dgram_.recv (&mcast_info,sizeof (mcast_info),remote_addr_)==-1)

return -1;

else {

ACE_DEBUG ((LM_DEBUG, "(%P|%t) Received multicast from %s:%d.\n",

remote_addr_.get_host_name(), remote_addr_.get_port_number()));

ACE_DEBUG((LM_DEBUG,"Successfully received %d\n", mcast_info));

return 0;

}

}
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private:

ACE_INET_Addr mcast_addr_;

ACE_INET_Addr remote_addr_;

ACE_SOCK_Dgram_Mcast mcast_dgram_;

int mcast_info;

};

int main(int argc, char*argv[])

{

Receiver_Multicast m(2000);

//Will run forever

while(m.recv_multicast()!=-1) {

ACE_DEBUG((LM_DEBUG,"Multicaster successful \n"));

}

ACE_DEBUG((LM_ERROR,"Multicaster failed \n"));

exit(-1);

}

The above example shows how an application can use ACE_SOCK_Dgram_Mcast to 
subscribe to and receive messages from a multicast group.  
The constructor of the Receiver_Multicast class subscribes the object to the multicast 
group and the destructor of the object unsubscribes. Once subscribed, the application 
waits forever for any data that is sent to the multicast address. 
 
The next example shows how an application can send datagram messages to the multicast 
address or group using the ACE_SOCK_Dgram wrapper class. 
Example 6

#include "ace/SOCK_Dgram_Mcast.h"

#include "ace/OS.h"

#define DEFAULT_MULTICAST_ADDR "224.9.9.2"

#define TIMEOUT 5

class Sender_Multicast{

public:

Sender_Multicast(int port):

local_addr_((u_short)0),dgram_(local_addr_),

multicast_addr_(port,DEFAULT_MULTICAST_ADDR)

{

}

// Method which uses a simple datagram component to send data to the //multicast group.

int send_to_multicast_group()

{

//Convert the information we wish to send into network byte order

mcast_info= htons (1000);

// Send multicast
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if(dgram_.send (&mcast_info, sizeof (mcast_info), multicast_addr_)==-1)
return -1;

ACE_DEBUG ((LM_DEBUG,

"%s; Sent multicast to group. Number sent is %d.\n",

__FILE__,

mcast_info));

return 0;

}

private:

ACE_INET_Addr multicast_addr_;

ACE_INET_Addr local_addr_;

ACE_SOCK_Dgram dgram_;

int mcast_info;

};

int main(int argc, char*argv[])

{

Sender_Multicast m(2000);

if(m.send_to_multicast_group()==-1) {

ACE_DEBUG((LM_ERROR,"Send to Multicast group failed \n"));

exit(-1);

}

else

ACE_DEBUG((LM_DEBUG,"Send to Multicast group successful \n"));

}

 
In this example, the client uses a datagram wrapper to send data to the multicast group.  
The  Sender_Multicast class contains a simple  send_to_multicast_group() method. 
This method uses the datagram wrapper component dgram_ to send a single message to 
the multicast group. This message contains nothing but an integer. When the receiver 
receives the message it will print it to standard output.
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Me mory Mana ge m ent  
An introduction to Memory Management in ACE 
The ACE framework contains a very rich array of memory management classes. These 
classes allow you to manage both dynamic memory (memory allocated from the heap) 
and shared memory (memory shared between processes) easily and efficiently. You can 
manage memory using several different schemes. You, the programmer, decide which 
scheme is most suitable for the application you are developing and then use the correct 
ACE class that implements the scheme.  
ACE contains two different sets of classes for memory management.  
The first set are those classes which are based on the ACE_Allocator class. The classes in 
this set use dynamic binding and the strategy pattern to provide for flexibility and 
extensibility. Classes from this set can only be used to provide for local dynamic memory 
allocation.  
The second set of classes is based on the ACE_Malloc template class. This set uses C++ 
templates and external polymorphism to provide for flexibility in memory allocation 
mechanisms. The classes in this set not only include classes for local dynamic memory 
management, but also include classes to manage shared memory between processes. 
These shared memory classes use the underlying operating systems (OS) shared memory 
interface.  
Why use one set and not the other? The tradeoff here is between performance and 
flexibility. The ACE_Allocator classes are more flexible as the actual allocator object can 
be changed at runtime. This is done through dynamic binding, which in C++ needs 
virtual functions. Therefore, this flexibility does not come without a cost. The indirection 
caused by virtual function calls makes this alternative the more expensive option.  
The ACE_Malloc classes, on the other hand, perform better.   The malloc class is 
configured, at compile time, with the memory allocator that it will use. Such compile 
time configurability is called External Polymorphism.  An ACE_Malloc based allocator 
can’t be  configured at run-time.  Although ACE_Malloc is more efficient, it is not as 
flexible as ACE_Allocator. 

 

Chapter 
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A llo c a tor s 

Allocators are used in ACE to provide a dynamic memory management mechanism. 
Several Allocators are available in ACE which work using different policies. These 
different policies provide the same functionality but with different characteristics. For 
example, in real-time systems it may be necessary for an application to pre-allocate all 
the dynamic memory it will need from the OS. It would then control allocation and 
release internally. By doing this the performance for the allocation and release routines is 
highly predictable. 
All Allocators support the ACE_Allocator interface and therefore can be easily replaced 
with one another, either at runtime or compile time. And that is where the flexibility 
comes in. Consequently an ACE_Allocator can be used in conjunction with the Strategy 
Pattern to provide very flexible memory management. The Table below gives a brief 
description of the different allocators that are available in ACE. The description specifies  
the memory allocation policy used by each allocator. 
 
Allocator Description 

ACE_Allocator Interface class for the set of Allocator classes in ACE. These 
classes use inheritance and dynamic binding to provide 
flexibility. 

ACE_Static_Allocator This Allocator manages a fixed size of memory. Every time 
a request is received for more memory, it moves an internal 
pointer to return the chunk. This allocator assumes that 
memory, once allocated, will never be freed. 

ACE_Cached_Allocator This Allocator preallocates a pool of memory that contains a 
specific number of size-specified chunks. These chunks are 
maintained on an internal free list and returned when a 
memory request (malloc()) is received. When applications 
call free(), the chunk is returned back to the internal free list 
and not to the OS.  

ACE_New_Allocator An allocator which provides a wrapper over the C++ new 
and delete operators, i.e. it internally uses the new and 
delete operators to satisfy dynamic memory requests. 

 

 

U sing th e  C a c h e d A llo c a tor 

The ACE_Cached_Allocator pre-allocates memory and then manages this memory using 
its own internal mechanisms. This pre-allocation occurs in the constructor of the class. 
Consequently, if you use this allocator your memory management scheme only uses the 
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OS memory allocation interface in the beginning to do the pre-allocation. After that, the 
ACE_Cached_Allocator takes care of all allocation and release of memory.  
Why would anyone want to do this? Performance and predictability. Consider a real-time 
system, which must be highly predictable. Using the OS to allocate memory would 
involve expensive and non-predictable calls into the kernel of the OS. The 
ACE_Cached_Allocator on the other hand involves no such calls. Each allocation and 
release would occur in a fixed amount of time.  
 
 
 
 
 
 
 
 
The Cached Allocator is illustrated in the diagram above. The memory that is pre-
allocated, in the constructor, is maintained internally on a free list.  This list maintains 
several “chunks” of memory as its nodes. The chunks can be any complex data types. 
You can specify the actual type you want the chunk to be. How you do that is illustrated 
in later examples.   
Allocation and release in this system involves a fixed amount of pointer manipulation in 
the free list. When a user asks for a chunk of memory it is handed a pointer and the free 
list is adjusted. When a user frees up memory it comes back into the free list. This goes 
on forever, unless the ACE_Cached_Allocator is destroyed at which point all memory is 
returned to the OS. In the case of memory used in a real-time system, internal 
fragmentation of chunks is a concern.  
The following example illustrates how the ACE_Cached_Allocator can be used to pre-
allocate memory and then handle requests for memory. 

Example 1

#include "ace/Malloc.h"

//A chunk of size 1K is created. In our case we decided to use a simple array

//as the type for the chunk. Instead of this we could use any struct or class

//that we think is appropriate.

typedef char MEMORY_BLOCK[1024];

//Create an ACE_Cached_Allocator which is passed in the type of the

//“chunk” that it must pre-allocate and assign on the free list.

// Since the Cached_Allocator is a template class we can pretty much

//pass it ANY type we think is appropriate to be a memory block.

typedef ACE_Cached_Allocator<MEMORY_BLOCK,ACE_SYNCH_MUTEX> Allocator;
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class MessageManager{

public:

//The constructor is passed the number of chunks that the allocator

//should pre-allocate and maintain on its free list.

MessageManager(int n_blocks):

allocator_(n_blocks),message_count_(0)

{

mesg_array_=new char*[n_blocks];

}

//Allocate memory for a message using the Allocator. Remember the message

//in an array and then increase the message count of valid messages

//on the message array.

void allocate_msg(const char *msg)

{

mesg_array_[message_count_]=allocator_.malloc(ACE_OS::strlen(msg)+1);

ACE_OS::strcpy(mesg_array_[message_count_],msg);

message_count_++;

}

//Free all the memory that was allocated. This will cause the chunks

//to be returned to the allocator’s internal free list

//and NOT to the OS.

void free_all_msg()

{

for(int i=0;i<message_count_;i++)

allocator_.free(mesg_array_[i]);

message_count_=0;

}

//Just show all the currently allocated messages in the message array.

void display_all_msg()

{

for(int i=0;i<message_count_;i++)

ACE_OS::printf("%s\n",mesg_array_[i]);

}

private:

char **mesg_array_;

Allocator allocator_;

int message_count_;

};

int main(int argc, char* argv[])

{

if(argc<2){

ACE_DEBUG((LM_DEBUG, "Usage: %s <Number of blocks>\n", argv[0]));

exit(1);

}

int n_blocks=ACE_OS::atoi(argv[1]);
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//Instantiate the Memory Manager class and pass in the number of blocks

//you want on the internal free list.

MessageManager mm(n_blocks);

//Use the Memory Manager class to assign messages and free them.

//Run this in your favorite debug environment and you will notice that the

//amount of memory your program uses after Memory Manager has been

//instantiated remains the same. That means the Cached Allocator

//controls or manages all the memory for the application.

//Do forever.

while(1){

//allocate the messages somewhere

ACE_DEBUG((LM_DEBUG,"\n\n\nAllocating Messages\n"));

for(int i=0; i<n_blocks;i++){

ACE_OS::sprintf(message,"Message %d: Hi There",i);

mm.allocate_msg(message);

}

//show the messages

ACE_DEBUG((LM_DEBUG,"Displaying the messages\n"));

ACE_OS::sleep(2);

mm.display_all_msg();

//free up the memory for the messages.

ACE_DEBUG((LM_DEBUG,"Releasing Messages\n"));

ACE_OS::sleep(2);

mm.free_all_msg();

}

return 0;

}

 
This simple example contains a message manager class which instantiates a cached 
allocator. This allocator is then used to allocate, display and free messages forever. The 
memory usage of the application, however, does not change. You can check this out with 
the debugging tool of your choice. 
 

A C E_M a llo c  

As mentioned earlier, the Malloc set of classes use the template class ACE_Malloc to 
provide for memory management. The ACE_Malloc template takes two arguments, a 
memory pool and a lock for the pool, which gives us our allocator class, as is shown in 
the figure below. 
 
 

ACE_Malloc 

Lock Class Memory Pool Class 



 

 24

 
 

H o w A C E_M allo c w or k s 

The idea here is that the ACE_Malloc class will "acquire" memory from the memory pool 
that was passed in and the application then "malloc()s" memory using the ACE_Malloc 
classes interface. The memory returned by the underlying memory pool is returned 
internally to the ACE_Malloc class in what are known in ACE as "chunks". The 
ACE_Malloc class uses these chunks of memory to allocate smaller "blocks" of memory 
to an application developer. This is illustrated in the diagram below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When an application requests a block of memory, the ACE_Malloc class will check if  
there is enough space to allocate the block from one of the chunks it has already acquired 
from the memory pool. If it cannot find a chunk with enough space on it, then it asks the 
underlying memory pool to return a larger chunk, so it can satisfy the application's 
request for a block of memory. When an application issues a free() call, ACE_Malloc will 
not return the memory that was freed back to the memory pool, but will maintain it on its 
free list. When ACE_Malloc receives subsequent requests for memory, it will use this 
free list to search for empty blocks that can be returned. Thus, when the ACE_Malloc 
class is used, the amount of memory allocated from the OS will only go up and not down, 
if simple malloc() and free() calls are the only calls issued. The ACE_Malloc class also 
includes a remove() method, which issues a request to the memory pool for it to return 
the memory to the OS. This method also returns the lock to the OS. 
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U sing A C E_M allo c 

Using the ACE_Malloc class is simple. First, instantiate ACE_Malloc with a memory 
pool and locking mechanism of your choice, to create an allocator class. This allocator 
class is subsequently used to instantiate an object, which is the allocator your application 
will use. When you instantiate an allocator object, the first parameter to the constructor is 
a string, which is the “name” of the underlying memory pool you want the allocator 
object to use. It is VERY important that the correct name is passed in to the constructor, 
especially if you are using shared memory. Otherwise the allocator will create a new 
memory pool for you. This, of course, is not what you want if you are using a shared 
memory pool, since then you get no sharing.  
To facilitate the sharing of the underlying memory pool (again, if you are using shared 
memory this is important), the ACE_Malloc class also includes a map type interface. 
Each block of memory that is allocated can be given a name, and can thus easily be found 
found by another process looking through the memory pool. This includes bind() and 
find() calls. The bind() call is used to give names to the blocks that are returned by the 
malloc() call to ACE_Malloc. The find() call, as you probably expect, is then used to find 
the memory previously associated with the name. 
There are several different memory pool classes that are available (shown in table below) 
to be used when instantiating the ACE_Malloc template class. These pools cannot only be 
used to allocate memory that are used within a process, but can also be used to allocate 
memory pools that are shared between processes. This also makes it clearer why the 
ACE_Malloc template needs to be instantiated with a locking mechanism. The lock 
ensures that when multiple processes access the shared memory pool, it doesn’t get 
corrupted. Note that even when multiple threads are using the allocator, it will be 
necessary to provide a locking mechanism. 
 
The different memory pools available are listed in the table below: 
Name of Pool Macro Description 

ACE_MMAP_
Memory_Pool

ACE_MMAP_MEMORY_POOL Uses the <mmap(2)> to create the 
pool. Thus memory can be shared 
between processes. Memory is 
updated to the backing store on 
every update. 

ACE Lite MMAP
Memory_Pool

ACE_LITE_MMAP_MEMORY_POOL Uses the <mmap(2)> to create the 
pool. Unlike the previous map, this 
does not update to the backing 
store. The tradeoff is lowered 
reliability. 

ACE_Sbrk_
Memory_Pool

ACE_SBRK_ MEMORY_POOL Uses the <sbrk(2)> call to create 
the pool.  

ACE_Shared_
Memory_Pool

ACE_SHARED_ MEMORY_POOL Uses the System V <shmget(2)> 
call to create the memory pool. 
M b h d b t
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Memory can be shared between 
processes. 

ACE_Local_
Memory_Pool

ACE__LOCAL_ MEMORY_POOL Creates a local memory pool based 
on the C++ new and delete 
operators. This pool can't be shared 
between processes. 

 
The following example uses the ACE_Malloc class with a shared memory pool (the 
example shows it using ACE_SHARED_MEMORY_POOL, but any memory pool, from 
the table above, that supports shared memory may be used).  
It creates a server process, which creates a memory pool and then allocates memory from 
the pool. The server then creates messages it wants the client process to “pick up” using 
the memory it allocated from the pool. Next, it binds names to these messages so that the 
client can use the corresponding find operation to find the messages the server inserted 
into the pool.  
The client starts up and creates its own allocator, but uses the SAME memory pool. This 
is done by passing the same name to the constructor for the allocator, after which it uses 
the find() call to find the messages inserted by the server and print them out for the user 
to see.  

Example 2

#include "ace/Shared_Memory_MM.h"

#include "ace/Malloc.h"

#include "ace/Malloc_T.h"

#define DATA_SIZE 100

#define MESSAGE1 "Hiya over there client process"

#define MESSAGE2 "Did you hear me the first time?"

LPCTSTR poolname="My_Pool";

typedef ACE_Malloc<ACE_SHARED_MEMORY_POOL,ACE_Null_Mutex> Malloc_Allocator;

static void

server (void){

//Create the memory allocator passing it the shared memory

//pool that you want to use

Malloc_Allocator shm_allocator(poolname);

//Create a message, allocate memory for it and bind it with

//a name so that the client can the find it in the memory

//pool

char* Message1=(char*)shm_allocator.malloc(strlen(MESSAGE1));

ACE_OS::strcpy(Message1,MESSAGE1);

shm_allocator.bind("FirstMessage",Message1);

ACE_DEBUG((LM_DEBUG,"<<%s\n",Message1));

//How about a second message

char* Message2=(char*)shm_allocator.malloc(strlen(MESSAGE2));

ACE_OS::strcpy(Message2,MESSAGE2);
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shm_allocator.bind("SecondMessage",Message2);

ACE_DEBUG((LM_DEBUG,"<<%s\n",Message2));

//Set the Server to go to sleep for a while so that the client has

//a chance to do its stuff

ACE_DEBUG((LM_DEBUG,

"Server done writing.. going to sleep zzz..\n\n\n"));

ACE_OS::sleep(2);

//Get rid of all resources allocated by the server. In other

//words get rid of the shared memory pool that had been

//previously allocated

shm_allocator.remove();

}

static void

client(void){

//Create a memory allocator. Be sure that the client passes

// in the "right" name here so that both the client and the

//server use the same memory pool. We wouldn’t want them to

// BOTH create different underlying pools.

Malloc_Allocator shm_allocator(poolname);

//Get that first message. Notice that the find is looking up the

//memory based on the "name" that was bound to it by the server.

void *Message1;

if(shm_allocator.find("FirstMessage",Message1)==-1){

ACE_ERROR((LM_ERROR,

"Client: Problem cant find data that server has sent\n"));

ACE_OS::exit(1);

}

ACE_OS::printf(">>%s\n",(char*) Message1);

ACE_OS::fflush(stdout);

//Lets get that second message now.

void *Message2;

if(shm_allocator.find("SecondMessage",Message2)==-1){

ACE_ERROR((LM_ERROR,

"Client: Problem cant find data that server has sent\n"));

ACE_OS::exit(1);

}

ACE_OS::printf(">>%s\n",(char*)Message2);

ACE_OS::fflush(stdout);

ACE_DEBUG((LM_DEBUG,"Client done reading! BYE NOW\n"));

ACE_OS::fflush(stdout);

}

int main (int, char *[]){

switch (ACE_OS::fork ())
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{

case -1:

ACE_ERROR_RETURN ((LM_ERROR, "%p\n", "fork"), 1);

case 0:

// Make sure the server starts up first.

ACE_OS::sleep (1);

client ();

break;

default:

server ();

break;

}

return 0;

}

U sin g t h e  M a llo c  c l a s s e s w i t h t h e  A llo c a t or in t e rf a c e  

Most container classes in ACE allow for an Allocator object to be passed in for managing 
memory used in the container. Since certain memory allocation schemes are only 
available with the ACE_Malloc set of classes, ACE includes an adapter template class 
ACE_Allocator_Adapter, which adapts the ACE_Malloc class to the ACE_Allocator 
interface. What this means is that the new class created after instantiating the template 
can be used in place of any ACE_Allocator. For example: 
typedef ACE_Allocator_Adapter<ACE_Malloc<ACE_SHARED_MEMORY_POOL,ACE_Null_Mutex>>

Allocator;

Thus this newly created Allocator class can be used wherever the Allocator interface is 
required, but it will use the underlying functionality of ACE_Malloc with a 
ACE_Shared_Memory_Pool. Thus the adapter “adapts” the Malloc class to the Allocator 
class. 
This allows one to use the functionality associated with the ACE_Malloc set of classes 
with the dynamic binding flexibility available with ACE_Allocator. It is however, 
important to remember that this flexibility comes at the price of sacrificing some 
performance. 
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T hre ad Mana ge m ent 
Synchronization and thread management mechanisms in ACE 
ACE contains many different classes for creating and managing multi-threaded programs. 
In this chapter, we will go over a few of the mechanisms that are available in ACE to 
provide for thread management. In the beginning, we will go over the simple thread 
wrapper classes, which contain minimal management functionality. As the chapter 
progresses, however,  we will go over the more powerful management mechanisms 
available in ACE_Thread_Manager. ACE also contains a very comprehensive set of 
classes that deal with synchronization of threads. These classes will also be covered here. 
 

C r e a t in g a n d c a n c e lin g t hr e a d s 

There are several different interfaces that are available for thread management on 
different platforms. These include the POSIX pthreads interface, Solaris threads, Win32 
threads etc. Each of these interfaces provides the same or similar functionality but with 
APIs that are vastly different. This leads to difficult, tedious and error-prone 
programming, since the application programmer must make himself familiar with several 
interfaces to write on different platforms. Furthermore, such programs, once written, are 
non-portable and inflexible. 
ACE_Thread provides a simple wrapper around the OS thread calls that deal with issues 
such as creation, suspension, cancellation and deletion of threads.  This gives the 
application programmer a simple and easy-to-use interface which is portable across 
different threading APIs. ACE_Thread is a very thin wrapper, with minimal overhead. 
Most methods are  inlined and thus are equivalent to a direct call to the underlying OS-
specific threads interface. All methods in ACE_Thread are static and the class is not 
meant to be instantiated. 
The following example illustrates how the ACE_Thread wrapper class can be used to 
create, yield and join with threads. 
 
 

Chapter 

4
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Example 1

#include "ace/Thread.h"

#include "ace/Synch.h"

static int number=0;

static int seed = 0;

static void*

worker(void *arg)

{

ACE_UNUSED_ARG(arg);

ACE_DEBUG((LM_DEBUG,"Thread (%t) Created to do some work"));

::number++;

ACE_DEBUG((LM_DEBUG," and number is %d\n",::number));

//Let the other guy go while I fall asleep for a random period

//of time

ACE_OS::sleep(ACE_OS::rand()%2);

//Exiting now

ACE_DEBUG((LM_DEBUG,

"\t\t Thread (%t) Done! \t The number is now: %d\n",number));

return 0;

}

int main(int argc, char *argv[])

{

if(argc<2)

{

ACE_DEBUG((LM_DEBUG,"Usage: %s <number of threads>\n", argv[0]));

ACE_OS::exit(1);

}

ACE_OS::srand(::seed);

//setup the random number generator

int n_threads= ACE_OS::atoi(argv[1]);

//number of threads to spawn

ACE_thread_t *threadID = new ACE_thread_t[n_threads+1];

ACE_hthread_t *threadHandles = new ACE_hthread_t[n_threads+1];

if(ACE_Thread::spawn_n(threadID, //id's for each of the threads

n_threads, //number of threads to spawn

(ACE_THR_FUNC)worker, //entry point for new thread

0, //args to worker

THR_JOINABLE | THR_NEW_LWP, //flags

ACE_DEFAULT_THREAD_PRIORITY,
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0, 0, threadHandles)==-1)

ACE_DEBUG((LM_DEBUG,"Error in spawning thread\n"));

//spawn n_threads

for(int i=0; i<n_threads; i++)

ACE_Thread::join(threadHandles[i]);

//Wait for all the threads to exit before you let the main fall through

//and have the process exit.

return 0;

}

 
In this simple example n_thread number of worker threads are created. Each of these 
threads executes the worker() function defined in the program. The threads are created by 
using the ACE_Thread::spawn_n() call. This call is passed a pointer to the function 
which is to be called as the starting point of execution for the thread. (In this case the 
worker() function). One important point to note is that ACE_Thread::spawn_n() requires 
all starting functions (methods) for threads to be static or global (as is required when 
using the OS threads API directly). 
Once the worker function starts, it increments the global number variable, reports its 
present value and then falls asleep to yield the processor to another thread. The sleep() is 
for a random period of time. After the thread wakes up it, informs the user of the present 
value of number and falls out of the worker() function.  
Once a thread returns from its starting function it implicitly issues a thread exit() call on 
the thread library and exits. The worker thread thus exits once it “falls out” of the 
worker() function.  The main thread, which was responsible for creating the worker 
thread, is “waiting” for all other threads to complete their execution and exit before it 
exits. When the main thread does exit  (by falling out of the main()function ), the entire 
process will be destroyed. This happens because an implicit call to the exit(3c) function is 
made whenever a thread falls out of main.  Therefore, if the main thread is not forced to 
wait for the other threads then when it dies, the process will automatically be destroyed, 
destroying all the worker threads along with it, before they complete their job! 
This wait is performed using the ACE_Thread::join() call. This method takes in a handle 
(ACE_hthread_t) to the that that you wish the main thread to joi with.  
There are several facts worth noting in this example. First, there is no management 
functionality available that we can call upon that internally remembers the ids of the 
threads that the application has spawned. This makes it difficult to join(), kill() or 
generally manage the threads we spawned. The ACE_Thread_Manager which is covered 
later in this chapter alleviates these problems and in general should be used instead of the 
threads wrapper API.  
Second, no synchronization primitives were used in the program to protect the global 
data. In this case, they were not necessary, since all threads were only performing 
addition operations on the global. In real life, however, “locks” would be required to 
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protect all shared mutable data (global or static variables), such as the global number
variable. 
 

S y n c hro niz a t io n prim i t iv e s in A C E 

ACE has several classes that can be used for synchronization purposes. These classes can 
be divided into the following categories 

!" The ACE Locks Class Category 
!" The ACE Guards Class Category 
!" The ACE Conditions Class Category 
!" Miscellaneous ACE Synchronization classes 

 

T h e A C E Lo c k s C a t e gor y 

The locks category includes classes that wrap simple locking mechanisms, such as 
mutexes, semaphores, read/write mutexes and tokens. The classes that are available under 
this category are shown in the table below. Each class name is followed by a brief 
description of how and what it can be used for: 
Name Description 

ACE_Mutex Wrapper class around the mutual exclusion mechanism 
(which, depending on the platform, may be mutex_t, 
pthread_mutex_t, etc.) and are used to provide a simple 
and efficient mechanism to serialize access to a shared 
resource. Similar in functionality to a binary sempahore. 
Can be used for mutual exclusion among both threads and 
processes. 

ACE_Thread_Mutex Can be used in place of ACE_Mutex and is specific for 
synchronization of threads. 

ACE_Process_Mutex Can be used in place of ACE_Mutex and is specific for 
synchronization of processes. 

ACE_Null_Mutex Provides a do-nothing implementation of the ACE Mutex
interface, and can be replaced with it when no 
synchronization is required. 

ACE_RW_Mutex Wrapper classes which encapsulate readers/writers locks. 
These are locks that are acquired differently for reading and 
writing, thus enabling multiple readers to read while no one 
is writing. 

ACE_RW_Thread_Mutex Can be used in place of ACE_RW_Mutex and is specific for 
synchronization of threads. 
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ACE_RW_Process_Mutex Can be used in place of ACE_RW_Mutex and is specific for 
synchronization of processes. 

ACE_Semaphore These classes implement a counting semaphore, which is 
useful when a fixed number of threads can access a resource 
at the same time. In the case where the OS does not provide 
this kind of synchronization mechanism, it is simulated with 
mutexes. 

ACE_Thread_Semaphore Should be used in place of ACE_Semaphore and is specific 
for synchronization of threads. 

ACE_Process_Semaphore Should be used in place of ACE_Semaphore and is specific 
for synchronization of processes. 

ACE_Token This provides for a “recursive mutex”, i.e. the thread that 
currently holds the token can reacquire it multiple times 
without blocking. Also, when the token is released, it makes 
sure that the next thread which was blocked and waiting for 
the token is the next one to go. 

ACE_Null_Token A do-nothing implementation of the token interface used 
when you know that multiple threads won't be present. 

ACE_Lock An interface class which defines the locking interface. A 
pure virtual class, which, if used, will entail virtual function 
call overhead. 

ACE_Lock_Adapter A template-based adapter which allows any of the 
previously mentioned locking mechanisms to adapt to the 
ACE_Lock interface.   

 
The classes described in the table above all support the same interface. However, these 
classes are NOT related to each other in any inheritance hierarchy. In ACE, locks are 
usually parameterized using templates since the overhead of having virtual function calls 
is, in most cases, unacceptable. The usage of templates allows the programmer a certain 
degree of flexibility. He can choose the type of locking mechanism he wishes to use at 
compile time, but not at runtime. Nevertheless, in some places the programmer may need 
to use dynamic binding and substitution, and for these cases, ACE includes the ACE_Lock
and ACE_Lock_Adapter classes. 
 
Using the Mutex classes 

A mutex implements a simple form of synchronization called Òmutual exclusionÓ (hence 
the name mutex). Mutexs prohibit multiple threads from entering a  protected or Òcritical 
sectionÓ of code. Consequently, at any moment of time , only one thread is allowed into 
such a protected section of code.  
Before any thread can enter a defined critical section, it must acquire ownership of the 
mutex associated with that section. If another thread already owns the mutex for the 
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critical section then other threads cant enter. These other threads will be forced to wait 
until the current owner releases the mutex.  
When do you use mutexes? Mutexes are used to protect shared mutable code, i.e. data 
that is either global or static. Such data must be protected by mutexes to prevent its 
corruption when multiple threads access it at the same time. 
 
 The following example illustrates usage of the ACE_Thread_Mutex class. Notice that 
ACE_Mutex could easily replace the use of ACE_Thread_Mutex class here since they both 
have the same interface. 
 

Example 2

#include "ace/Synch.h"

#include "ace/Thread.h"

//Arguments that are to be passed to the worker thread are passed

//through this struct.

struct Args{

public:

Args(int iterations):

mutex_(),iterations_(iterations){}

ACE_Thread_Mutex mutex_;

int iterations_;

};

//The starting point for the worker threads

static void*

worker(void*arguments){

Args *arg= (Args*) arguments;

for(int i=0;i<arg->iterations_;i++)

{

ACE_DEBUG((LM_DEBUG,

"(%t) Trying to get a hold of this iteration\n"));

//This is our critical section

arg->mutex_.acquire();

ACE_DEBUG((LM_DEBUG,"(%t) This is iteration number %d\n",i));

ACE_OS::sleep(2);

//simulate critical work

arg->mutex_.release();

}

return 0;

}

int main(int argc, char*argv[])

{

if(argc<2){

ACE_OS::printf("Usage: %s <number_of_threads>

<number_of_iterations>\n", argv[0]);

ACE_OS::exit(1);
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}

Args arg(ACE_OS::atoi(argv[2]));

//Setup the arguments

int n_threads = ACE_OS::atoi(argv[1]);

//determine the number of threads to be spawned.

ACE_thread_t *threadID = new ACE_thread_t[n_threads+1];

ACE_hthread_t *threadHandles = new ACE_hthread_t[n_threads+1];

if(ACE_Thread::spawn_n(threadID, //id's for each of the threads

n_threads, //number of threads to spawn

(ACE_THR_FUNC)worker, //entry point for new thread

&arg, //args to worker

THR_JOINABLE | THR_NEW_LWP, //flags

ACE_DEFAULT_THREAD_PRIORITY,

0, 0, threadHandles)==-1)

ACE_DEBUG((LM_DEBUG,"Error in spawning thread\n"));

//spawn n_threads

for(int i=0; i<n_threads; i++)

ACE_Thread::join(threadHandles[i]);

//Wait for all the threads to exit before you let the main fall through

//and have the process exit.

return 0;

}

 
In the above example, the ACE_Thread wrapper class is used to spawn off multiple 
threads to perform the worker() function, as in the previous example. Each thread is 
passed in an Arg object which contains the number of iterations it is supposed to perform 
and the mutex that it is going to use.  
In this example, on startup, each thread immediately enters a for loop. Once inside the 
loop, the thread enters a critical section. The work done within this critical section is 
protected by using an ACE_Thread_Mutex mutex object. This object was passed in as an 
argument to the worker thread from the main thread. Control of the critical section is 
achieved by acquiring ownership of the mutex. This is done by issuing an acquire() call 
on the ACE_Thread_Mutex object. Once the mutex is acquired, no other thread can enter 
this section of code. Control of the critical section is released by using the release() call. 
Once ownership of the mutex is relinquished, any other waiting threads are awakened. 
These threads then compete to obtain ownership of the mutex. Whichever thread 
manages to acquire ownership first enters the critical section. 
 
Using the Lock and Lock Adapter for dynamic binding 

As mentioned earlier, the mutex variety of locks is meant to be used either directly in 
your code, or, if flexibility is desired, as a template parameter. However, if you need to 
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change the type of lock that is used with your code dynamically, i.e. at run-time, these 
locks cannot be used.  
To counter this problem, ACE includes the ACE_Lock and ACE_Lock_Adapter classes, 
which allow for such run-time substitution. 
The following example illustrates how the ACE_Lock class and ACE_Lock_Adapter 
provide the application programmer with the facility to use dynamic binding and 
substitution with the locking mechanisms.  
Example 3

#include "ace/Synch.h"

#include "ace/Thread.h"

//Arguments that are to be passed to the worker thread are passed

//through this class.

struct Args

{

public:

Args(ACE_Lock* lock,int iterations):

mutex_(lock),iterations_(iterations){}

ACE_Lock* mutex_;

int iterations_;

};

//The starting point for the worker threads

static void*

worker(void*arguments){

Args *arg= (Args*) arguments;

for(int i=0;i<arg->iterations_;i++){

ACE_DEBUG((LM_DEBUG,

"(%t) Trying to get a hold of this iteration\n"));

//This is our critical section

arg->mutex_->acquire();

ACE_DEBUG((LM_DEBUG,"(%t) This is iteration number %d\n",i));

ACE_OS::sleep(2);

//simulate critical work

arg->mutex_->release();

}

return 0;

}

int main(int argc, char*argv[])

{

if(argc<4){

ACE_OS::printf("Usage: %s <number_of_threads>

<number_of_iterations> <lock_type>\n", argv[0]);

ACE_OS::exit(1);

}

//Polymorphic lock that will be used by the application

ACE_Lock *lock;
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//Decide which lock you want to use at run time,

//recursive or non-recursive.

if(ACE_OS::strcmp(argv[3],"Recursive"))

lock=new ACE_Lock_Adapter<ACE_Recursive_Thread_Mutex>;

else

lock=new ACE_Lock_Adapter<ACE_Thread_Mutex>

//Setup the arguments

Args arg(lock,ACE_OS::atoi(argv[2]));

//spawn threads and wait as in previous examples..

}

In this example, the only difference from the previous example is that the ACE_Lock class 
is used with ACE_Lock_Adapter to provide dynamic binding. The decision as to whether 
the underlying locking mechanism will be use recursive or non-recursive mutexes is 
made from command line arguments while the program is running. The advantage of 
using dynamic binding, again, is that the actual locking mechanism can be substituted at 
run time. The disadvantage is that each call to the lock now entails an extra level of 
indirection through the virtual function table.  
 
Using Tokens 

As mentioned in the table the ACE_Token class provides for a “named recursive mutex”, 
which can be reacquired multiple times by the same thread that had initially acquired it. 
The ACE_Token class also ensures strict FIFO ordering of all threads that try to acquire 
it.  
Recursive locks allow the same thread to acquire the same lock multiple times. That is a 
lock cannot deadlock trying to acquire a lock it already has. These types of locks come in 
handy in various different situations.  For example, if you use a lock for maintaing the 
consistency of a trace stream you may want this lock to be recursive. This comes in 
handy as one method may call a trace routine, acquire the lock, be interrupted by a signal 
and again try to acquire the trace lock. If the lock was non-recursive the thread would 
deadlock on itself here. You will find many other interesting applications for recursive 
locks. One important point to remember is that you must release the recursive lock as 
many times as you acquire it. 
When I ran the previous example (example 3) on SunOS 5.x I found that the thread that 
released the lock was the one that managed to reacquire it too! (in  around 90% of the 
cases.)  However if you run the example with the ACE_Token class as the locking 
mechanism each thread has its turn and then gives up to the next thread in line.  
Although ACE_Tokens are very useful as named recursive locks they are really part of 
a larger framework for “token management”.  This framework allows you to maintain the 
consistency of data within a data store. Unfortunatley this is beyond the scope of this 
tutorial. 
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Example 4

#include "ace/Token.h"

#include "ace/Thread.h"

//Arguments that are to be passed to the worker thread are passed

//through this struct.

struct Args

{

public:

Args(int iterations):

token_(“myToken”),iterations_(iterations){}

ACE_Token token_;

int iterations_;

};

//The starting point for the worker threads

static void*

worker(void*arguments){

Args *arg= (Args*) arguments;

for(int i=0;i<arg->iterations_;i++){

ACE_DEBUG((LM_DEBUG,"(%t) Trying to get a hold of this iteration\n"));

//This is our critical section

arg->token_.acquire();

ACE_DEBUG((LM_DEBUG,"(%t) This is iteration number %d\n",i));

//work

ACE_OS::sleep(2);

arg->token_.release();

}

return 0;

}

int main(int argc, char*argv[])

{

//same as previous examples..

}

T h e A C E G u ards C a t e gor y 

The Guards in ACE are used to automatically acquire and release locks. An object of the 
Guard class defines a “block” of code over which a lock is acquired. The lock is released 
automatically when the block is exited.  
The Guard classes in ACE are templates which are parameterized with the type of 
locking mechanism required. The underlying lock could be any of the classes that were 
described in the ACE Locks Category, i.e. any of the mutex or lock classes. This works 
by using the constructor of the object to acquire the lock and the destructor to release the 
lock. The following Guards are available in ACE: 
 
Name Description 

ACE_Guard Automatically calls acquire() and release() on the underlying 
l k C b d f th l k i th ACE l k l
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lock. Can be passed any of the locks in the ACE locks class 
category as its template parameter. 

ACE_Read_Guard Automatically calls acquire_read() and release() on the 
underlying lock.  

ACE_Write_Guard Automatically calls acquire_write() and release() on the 
underlying lock. 

 
The following example illustrates how guards can be used: 
Example 5

#include "ace/Synch.h"

#include "ace/Thread.h"

//Arguments that are to be passed to the worker thread are passed

//through this class.

class Args{

public:

Args(int iterations):

mutex_(),iterations_(iterations){}

ACE_Thread_Mutex mutex_;

int iterations_;

};

//The starting point for the worker threads

static void*

worker(void*arguments){

Args *arg= (Args*) arguments;

for(int i=0;i<arg->iterations_;i++){

ACE_DEBUG((LM_DEBUG,"(%t) Trying to get a hold of this iteration\n"));

ACE_Guard<ACE_Thread_Mutex> guard(arg->mutex_);

{

//This is our critical section

ACE_DEBUG((LM_DEBUG,"(%t) This is iteration number %d\n",i));

//work

ACE_OS::sleep(2);

}//end critical section

}

return 0;

}

int main(int argc, char*argv[])

{

//same as previous example

}

 
In the above example, a guard manages the critical section in the worker thread. The 
Guard object is created from the ACE_Guard template class. The template is passed the 
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type of lock the guard should use. The guard object is created by passing the actual lock 
object it needs to acquire through its constructor. The lock is internally and automatically 
acquired by ACE_Guard and the section in the for loop is thus a protected critical section. 
Once it comes out of scope, the guard object is automatically destroyed, which causes the 
lock to be released. 
 
Guards are useful as they ensure that once you acquire a lock you will always release it 
(unless of course your thread dies away due to unforeseen circumstances). This proves 
extremely useful in complicated methods that follow many different return paths. 
 
 

T h e A C E C onditions C a t e gor y 

The ACE_Condition class is a wrapper class around the condition variable primitive of 
the OS. So what are condition variables anyway?  
Often times a thread needs a certain condition to be satisfied before it can continue with 
its operation. For example, consider a thread which needs to insert messages onto a 
global message queue. Before inserting any messages, it must check to see if there is 
space available on the message queue. If the message queue is in the full state, then it 
cannot do anything, and must go to sleep and try again at some later time. That is, before 
accessing the global resource, a condition must be true. Later, when another thread 
empties the message queue, there should be a way to inform or signal the original thread 
that there is now room on the message queue and that it should now try to insert the 
message again. This can be done  using condition variables. Condition variables are used 
not as mutual exclusions primitives, but as indicators that a certain condition has been 
reached, and thus a thread which was blocked because the condition was not true should 
try to continue. 
Your program should go through the following steps when using condition variables: 

!" Acquire the lock (mutex) to the global resource (e.g. the message queue). 
!" Check the condition. (e.g. Does the message queue have space on it?). 
!" If condition fails then call the condition variables wait() method. Wait for some 

future point in time when the condition may be true. 
!" When another thread performs some action on the global resource, it signal()s all 

the other threads that have tried some condition on the resource. (For example, 
another thread dequeues a message from the message queue and then signal()s on 
the condition variable, so that the threads that are blocked on the wait() can try to 
insert their message into the queue.)  

!" After waking up, re-check to see if the condition is now true. If it is, then perform 
some action on the global resource. (For example, enqueue a message on the 
global message queue.) 
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One important thing you should notice is that the condition variable mechanism, i.e. 
ACE_Cond, takes care of releasing the mutex on the global resource before blocking 
internally in the wait call. If it did not do this, then no other thread could work on the 
resource (which is the cause of the change in the condition). Also, once the blocked 
thread is signaled to wake up again, it internally re-acquires the lock before checking the 
condition.  
The example below is a rehash of the first example in this chapter. If you remember, we 
had said that using the ACE_Thread::join() call to make the main thread wait for all other 
threads to terminate. Another way to achieve the same solution, using condition 
variables, would be for the main thread to wait for the condition “all threads are done” to 
be true before exiting. The last thread could signal the waiting main thread through a 
condition variable that all threads are done and it is the last. The main thread would then 
go ahead and exit the application and destroy the process. This is illustrated below: 
 
Example 6

#include "ace/Thread.h"

#include "ace/Synch.h"

static int number=0;

static int seed=0;

class Args{

public:

Args(ACE_Condition<ACE_Thread_Mutex> *cond, int threads):

cond_(cond), threads_(threads){}

ACE_Condition<ACE_Thread_Mutex> *cond_;

int threads_;

};

static void* worker(void *arguments){

Args *arg= (Args*)arguments;

ACE_DEBUG((LM_DEBUG,"Thread (%t) Created to do some work\n"));

::number++;

//Work

ACE_OS::sleep(ACE_OS::rand()%2);

//Exiting now

ACE_DEBUG((LM_DEBUG,

"\tThread (%t) Done! \n\tThe number is now: %d\n",number));

//If all threads are done signal main thread that

//program can now exit

if(number==arg->threads_){

ACE_DEBUG((LM_DEBUG,

"(%t) Last Thread!\n All threads have done their job!

Signal main thread\n"));

arg->cond_->signal();

}

return 0;

}
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int main(int argc, char *argv[]){

if(argc<2){

ACE_DEBUG((LM_DEBUG,

"Usage: %s <number of threads>\n", argv[0]));

ACE_OS::exit(1);

}

int n_threads=ACE_OS::atoi(argv[1]);

//Setup the random number generator

ACE_OS::srand(::seed);

//Setup arguments for threads

ACE_Thread_Mutex mutex;

ACE_Condition<ACE_Thread_Mutex> cond(mutex);

Args arg(&cond,n_threads);

//Spawn off n_threads number of threads

for(int i=0; i<n_threads; i++){

if(ACE_Thread::spawn((ACE_THR_FUNC)worker,(void*)&arg,

THR_DETACHED|THR_NEW_LWP)==-1)

ACE_DEBUG((LM_DEBUG,"Error in spawning thread\n"));

}

//Wait for signal indicating that all threads are done and program

//can exit. The global resource here is “number” and the condition

//that the condition variable is waiting for is number==n_threads.

mutex.acquire();

while(number!=n_threads)

cond.wait();

ACE_DEBUG((LM_DEBUG,"(%t) Main Thread got signal. Program

exiting..\n"));

mutex.release();

ACE_OS::exit(0);

}

 
Notice that before evaluating the condition, a mutex is acquired by the main thread. The 
condition is then evaluated. If the condition is not true, then the main thread calls a wait 
on the condition variable. The condition variable in turn releases the mutex automatically 
and causes the main thread to fall asleep. Condition variables are always used in 
conjunction with a mutex like this. This is a general pattern [I] that can be described as 
 while(expression NOT TRUE) wait on condition variable; 

Remember that condition variables are not used for mutual exclusion, but are used for the 
signaling functionality we have been describing. 
Besides the ACE_Condition class, ACE also includes an ACE_Condition_Thread_Mutex 
class, which uses an ACE_Thread_Mutex as the underlying locking mechanism for the 
global resource.. 
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Mis c e lla n e ous Syn c hroniz a tion C la ss e s 

Besides the synchronization classes described above ACE also includes other 
synchronization classes such as ACE_Barrier and ACE_Atomic_Op. 

Barriers in ACE 

Barriers have a good name. The name pretty much describes what barriers are supposed 
to do. A group of threads can use a barrier to collectively synchronize with each other.  
Each thread in the group executes until it arrives at the barrier, after which it blocks. 
After all the involved threads have reached their respective barriers, they all continue 
with their execution. That is, they all block one by one waiting for the others to reach the 
barrier. Once all threads reach the “barrier point” in their execution paths, they all restart 
together. 
In ACE, the barrier is implemented in the ACE_Barrier class. When the barrier object is 
instantiated, it is passed the number of threads it is going to be waiting on. Each thread 
issues a wait() call on the barrier object once they reach the “barrier point” in their  
execution path. They block at this point and wait for the other threads to reach their 
respective “barrier” points before they all continue together. When the barrier has 
received the appropriate number of wait() calls from the involved threads, it wakes up all 
the blocked threads together. 
The following example illustrates how barriers can be used with ACE 
 
Example 7

#include "ace/Thread.h"

#include "ace/Synch.h"

static int number=0;

static int seed=0;

class Args{

public:

Args(ACE_Barrier *barrier):

barrier_(barrier){}

ACE_Barrier *barrier_;

};

static void*

worker(void *arguments){

Args *arg= (Args*)arguments;

ACE_DEBUG((LM_DEBUG,"Thread (%t) Created to do some work\n"));

::number++;

//Work

ACE_OS::sleep(ACE_OS::rand()%2);

//Exiting now

ACE_DEBUG((LM_DEBUG,

"\tThread (%t) Done! \n\tThe number is now: %d\n",number));
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//Let the barrier know we are done.
arg->barrier_->wait();

ACE_DEBUG((LM_DEBUG,"Thread (%t) is exiting \n"));

return 0;

}

int main(int argc, char *argv[]){

if(argc<2){

ACE_DEBUG((LM_DEBUG,"Usage: %s <number of threads>\n", argv[0]));

ACE_OS::exit(1);

}

int n_threads=ACE_OS::atoi(argv[1]);

ACE_DEBUG((LM_DEBUG,"Preparing to spawn %d threads",n_threads));

//Setup the random number generator

ACE_OS::srand(::seed);

//Setup arguments for threads

ACE_Barrier barrier(n_threads);

Args arg(&barrier);

//Spawn off n_threads number of threads

for(int i=0; i<n_threads; i++){

if(ACE_Thread::spawn((ACE_THR_FUNC)worker,

(void*)&arg,THR_DETACHED|THR_NEW_LWP)==-1)

ACE_DEBUG((LM_DEBUG,"Error in spawning thread\n"));

}

//Wait for all the other threads to let the main thread

// know that they are done using the barrier

barrier.wait();

ACE_DEBUG((LM_DEBUG,"(%t)Other threads are finished. Program exiting..\n"));

ACE_OS::sleep(2);

}

 
In this example, a barrier is created and then passed to the worker threads. Each worker 
thread calls wait() on the barrier just before exiting, causing all threads to be blocked 
after they have completed their work and right before they exit. The main thread also 
blocks just before exiting. Once all threads (including main) have reached the end of their 
execution, they all continue and then exit together. 
 
Atomic Op 

The ACE_Atomic_Op class is used to transparently parameterize synchronization into 
basic arithmetic operations. ACE_Atomic_Op is a template class that is passed in a 
locking mechanism and the type which is be parameterized. ACE achieves this by 
overloading all arithmetic operators and ensuring that a lock is acquired before the 
operation and then released after the operation. The operation itself is delegated to the 
class passed in through the template.  
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The following example illustrates the usage of this class. 
Example 8

#include "ace/Synch.h"

//Global mutable and shared data on which we will perform simple

//arithmetic operations which will be protected.

ACE_Atomic_Op<ACE_Thread_Mutex,int> foo;

//The worker threads will start from here.

static void* worker(void *arg){

ACE_UNUSED_ARG(arg);

foo=5;

ACE_ASSERT (foo == 5);

++foo;

ACE_ASSERT (foo == 6);

--foo;

ACE_ASSERT (foo == 5);

foo += 10;

ACE_ASSERT (foo == 15);

foo -= 10;

ACE_ASSERT (foo == 5);

foo = 5L;

ACE_ASSERT (foo == 5);

return 0;

}

int main(int argc, char *argv[])

{

//spawn threads as in previous examples

}

 
In the above program, several simple arithmetic operations are performed on  the foo 
variable. After the operation, an assertion check is performed to make sure that the value 
of the variable is what it is “supposed” to be.  
You may be wondering why synchronization of such arithmetic primitives (such as in the 
program above) is necessary. You must think that increment and decrement operations 
should be atomic.  
However, these operations are usually NOT atomic. The CPU would probably divide the 
instructions into three steps: a read of the variable, an increment or decrement and then a 
write back. In such a case, if atomic operations are not used, then the following scenario 
may be developed.  

!" Thread one reads the variable, increments and gets swapped out without writing 
the new value back. 



 

 46

!" Thread two reads the old value of the variable, increments it and writes back a new 
incremented value. 

!" Thread one overwrites thread two’s increment with its own. 
The above example program may not break even if there are no synchronization 
primitives in place. The reason is that the thread in this case is compute-bound and the 
OS may not pre-empt such a thread. However, writing such code would be unsafe, since 
you cannot rely on the OS scheduler to act this way. In any case, in most environments, 
timing relationships are non-deterministic (because of real-time effects like page faults, 
or the use of timers or because of actually having multiple physical processors). 
 

T hr e a d M a n a g e m e n t w i t h t h e  ACE_Thr ead_Manager 

In all the previous examples, we have been using the ACE_Thread wrapper class to 
create and destroy threads. However, the functionality of this wrapper class is somewhat 
limited. The ACE_Thread_Manager provides a superset of the facilities that are available 
in ACE_Thread. In particular, it adds management functionality to make it easier to start, 
cancel, suspend and resume a group of related threads. It provides for creating and 
destroying groups of threads and tasks (ACE_Task is a higher level construct than threads 
and can be used in ACE for doing multi-threaded programming. We will talk more about 
tasks later). It also provides functionality such as sending signals to a group of threads or 
waiting on a group of threads instead of calling join in the non-portable fashion that we 
have seen in the previous examples.  
The following example illustrates how ACE_Thread_Manager  can be used to create, and 
then wait for, the completion of a group of threads. 
 
Example 9

#include "ace/Thread_Manager.h"

#include "ace/Get_Opt.h"

static void* taskone(void*){

ACE_DEBUG((LM_DEBUG,"Thread:(%t)started Task one! \n"));

ACE_OS::sleep(2);

ACE_DEBUG((LM_DEBUG,"Thread:(%t)finished Task one!\n"));

return 0;

}

static void* tasktwo(void*){

ACE_DEBUG((LM_DEBUG,"Thread:(%t)started Task two!\n"));

ACE_OS::sleep(1);

ACE_DEBUG((LM_DEBUG,"Thread:(%t)finished Task two!\n"));

return 0;

}

static void print_usage_and_die(){

ACE_DEBUG((LM_DEBUG,"Usage program_name
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-a<num threads for pool1> -b<num threads for pool2>"));
ACE_OS::exit(1);

}

int main(int argc, char* argv[]){

int num_task_1;

int num_task_2;

if(argc<3)

print_usage_and_die();

ACE_Get_Opt get_opt(argc,argv,"a:b:");

char c;

while( (c=get_opt())!=EOF){

switch(c){

case 'a':

num_task_1=ACE_OS::atoi(get_opt.optarg);

break;

case 'b':

num_task_2=ACE_OS::atoi(get_opt.optarg);

break;

default:

ACE_ERROR((LM_ERROR,"Unknown option\n"));

ACE_OS::exit(1);

}

}

//Spawn the first set of threads that work on task 1.

if(ACE_Thread_Manager::instance()->spawn_n(num_task_1,

(ACE_THR_FUNC)taskone,//Execute task one

0, //No arguments

THR_NEW_LWP, //New Light Weight Process

ACE_DEFAULT_THREAD_PRIORITY,

1)==-1) //Group ID is 1

ACE_ERROR((LM_ERROR,

Failure to spawn first group of threads: %p \n"));

//Spawn second set of threads that work on task 2.

if(ACE_Thread_Manager::instance()->spawn_n(num_task_2,

(ACE_THR_FUNC)tasktwo,//Execute task one

0, //No arguments

THR_NEW_LWP, //New Light Weight Process

ACE_DEFAULT_THREAD_PRIORITY,

2)==-1)//Group ID is 2

ACE_ERROR((LM_ERROR,

"Failure to spawn second group of threads: %p \n"));

//Wait for all tasks in grp 1 to exit

ACE_Thread_Manager::instance()->wait_grp(1);

ACE_DEBUG((LM_DEBUG,"Tasks in group 1 have exited! Continuing \n"));

//Wait for all tasks in grp 2 to exit

ACE_Thread_Manager::instance()->wait_grp(2);
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ACE_DEBUG((LM_DEBUG,"Tasks in group 2 have exited! Continuing \n"));
}

 
This next example illustrates the suspension, resumption and co-operative cancellation  
mechanisms that are available in the ACE_Thread_Manager. 

Example 10

// Test out the group management mechanisms provided by the

// ACE_Thread_Manager, including the group suspension and resumption,

//and cooperative thread cancellation mechanisms.

#include "ace/Thread_Manager.h"

static const int DEFAULT_THREADS = ACE_DEFAULT_THREADS;

static const int DEFAULT_ITERATIONS = 100000;

static void *

worker (int iterations)

{

for (int i = 0; i < iterations; i++){

if ((i % 1000) == 0){

ACE_DEBUG ((LM_DEBUG,

"(%t) checking cancellation before iteration %d!\n",

i));

//Before doing work check if you have been canceled. If so don’t

//do any more work.

if (ACE_Thread_Manager::instance ()->testcancel

(ACE_Thread::self ()) != 0){

ACE_DEBUG ((LM_DEBUG,

"(%t) has been canceled before iteration %d!\n",i));

break;

}

}

}

return 0;

}

int main (int argc, char *argv[]){

int n_threads = argc > 1 ? ACE_OS::atoi (argv[1]) : DEFAULT_THREADS;

int n_iterations = argc > 2 ? ACE_OS::atoi (argv[2]) :

DEFAULT_ITERATIONS;

ACE_Thread_Manager *thr_mgr = ACE_Thread_Manager::instance ();

//Create a group of threads n_threads that will execute the worker

//function the spawn_n method returns the group ID for the group of

//threads that are spawned. The argument n_iterations is passed back

//to the worker. Notice that all threads are created detached.

int grp_id = thr_mgr->spawn_n (n_threads, ACE_THR_FUNC (worker),

(void *) n_iterations,

THR_NEW_LWP | THR_DETACHED);

// Wait for 1 second and then suspend every thread in the group.
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ACE_OS::sleep (1);
ACE_DEBUG ((LM_DEBUG, "(%t) suspending group\n"));

if (thr_mgr->suspend_grp (grp_id) == -1)

ACE_ERROR ((LM_DEBUG, "(%t) %p\n", "Could not suspend_grp"));

// Wait for 1 more second and then resume every thread in the

// group.

ACE_OS::sleep (1);

ACE_DEBUG ((LM_DEBUG, "(%t) resuming group\n"));

if (thr_mgr->resume_grp (grp_id) == -1)

ACE_ERROR ((LM_DEBUG, "(%t) %p\n", "resume_grp"));

// Wait for 1 more second and then cancel all the threads.

ACE_OS::sleep (ACE_Time_Value (1));

ACE_DEBUG ((LM_DEBUG, "(%t) canceling group\n"));

if (thr_mgr->cancel_grp (grp_id) == -1)

ACE_ERROR ((LM_DEBUG, "(%t) %p\n", "cancel_grp"));

// Perform a barrier wait until all the threads have shut down.

thr_mgr->wait ();

return 0;

}

 
In this example n_threads are created to execute the worker function. Each thread loops 
in the worker function for n_iterations. While these threads loop in the worker
function, the main thread will suspend() them, then resume() them and lastly will cancel 
them. Each thread in worker will check for cancellation using the testcancel() method of 
ACE_Thread_Manager.  

T hr e a d S p e c ifi c  S t or a g e  

When a single threaded program wishes to create a variable whose value persists across 
multiple function calls, it allocates that data statically or globally. When such a program 
is made multi-threaded, this global or static data is the same for all the threads. This may 
or may not be desirable. For example, a pseudo-random generator may need a static or 
global integer seed variable which is not affected by its value being changed by multiple 
threads at the same time. However, in other cases the global or static data element may 
need to be different for each thread that executes. For example, consider a multi-threaded 
GUI application in which each window runs in a separate thread and has an input port 
from which it receives event input. Such an input port must remain “persistent” across 
function calls in the window but also must be window-specific or private. To achieve 
this, Thread Specific Storage is used. A structure such as the input port can be put into 
thread specific storage and is logically accessed as if it is static or global when it is 
actually private to the thread. 
Traditionally, thread-specific storage was achieved using a confusing low-level operating 
system API. In ACE, TSS is achieved using the ACE_TSS template class. The class 
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which is to be thread-specific is passed into the ACE_TSS template and then all its public 
methods may be invoked using the C++ -> operator.  
The following example illustrates how simple it is to use thread-specific storage in ACE. 
 
 
Example 11

#include "ace/Synch.h"

#include "ace/Thread_Manager.h"

class DataType{

public:

DataType():data(0){}

void increment(){ data++;}

void set(int new_data){ data=new_data;}

void decrement(){ data--;}

int get(){return data;}

private:

int data;

};

ACE_TSS<DataType> data;

static void* thread1(void*){

data->set(10);

ACE_DEBUG((LM_DEBUG,"(%t)The value of data is %d \n",data->get()));

for(int i=0;i<5;i++)

data->increment();

ACE_DEBUG((LM_DEBUG,"(%t)The value of data is %d \n",data->get()));

return 0;

}

static void * thread2(void*){

data->set(100);

ACE_DEBUG((LM_DEBUG,"(%t)The value of data is %d \n",data->get()));

for(int i=0; i<5;i++)

data->increment();

ACE_DEBUG((LM_DEBUG,"(%t)The value of data is %d \n",data->get()));

return 0;

}

int main(int argc, char*argv[]){

//Spawn off the first thread

ACE_Thread_Manager::instance()->spawn((ACE_THR_FUNC)thread1,0,THR_NEW_LWP| THR_DETACHED);

//Spawn off the second thread

ACE_Thread_Manager::instance()->spawn((ACE_THR_FUNC)thread2,0,THR_NEW_LWP| THR_DETACHED);

//Wait for all threads in the manager to complete.

ACE_Thread_Manager::instance()->wait();

ACE_DEBUG((LM_DEBUG,"Both threads done.Exiting.. \n"));

}



 

 51

In the above example, the class DataType was created in thread-specific storage.  
 
The methods of this class are then accessed using the -> operator from the functions 
thread1 and thread2, which are executed in two separate threads. The first thread sets 
the private data variable to 10 and then increments it by 5 to take it to 15. The second 
thread takes its private data variable, sets its value to 100 and increments it by 5 to 105. 
Although the data looks global it is actually thread specific, and each thread prints out 15 
and 105 respectively, indicating the same.  
There are several advantages in using thread specific storage where possible. If global or 
data can be kept in thread specific storage, then the overhead due to synchronization can 
be minimized. This is the major advantage of using TSS.  
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Tasks and A c tive Obje c ts 
Patterns for Concurrent Programming 
This chapter introduces the ACE_Task class, which was mentioned in the previous 
chapter, and also presents the Active Object pattern. This chapter will basically cover two 
topics. First, it will cover how to use the ACE_Task construct as a high-level object-
oriented mechanism for writing multi-threaded programs. Second, it will discuss how the 
ACE_Task is used in the Active Object Pattern [II]. 
 

A c t ive  O bj e c t s 

So what is an active object anyway? Traditionally, all objects are passive pieces of code. 
Code in an object is executed within the thread that has issued method calls on it. That is, 
the calling thread is “borrowed” to execute methods on the passive object.  
Active objects, however, act differently. These objects retain their own thread (or even 
multiple threads) and use this thread for execution of any methods invoked on them. Thus 
if you think of a traditional object with a thread (or multiple threads) encapsulated within 
it, you get an active object. 
For example, consider an object “A” that has been instantiated in the main() function of 
your program. When your program starts up, a single thread is created by the OS, to 
execute starting from the main() function. If you call any methods on object A, this 
thread will “flow” through and execute the code in that method. Once completed, this 
thread returns back to the point from which the method had been invoked and continues 
with its execution. However, if “A” was an Active Object, this is not what happens. In 
this case, the main thread is not borrowed by the Active Object. Instead, when a method 
is invoked on “A”, the execution of the method occurs within the thread that is retained 
by the Active Object. Another way to think about this is: if the method is invoked on a 
passive object (a regular object) then the call will be blocking or synchronous; if, on the 
other hand, the method is invoked on an Active Object, the call will be non-blocking or 
asynchronous. 
 

Chapter 

5
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A C E_T a s k  

ACE_Task is the base class for the Task or Active Object “processing construct” that is  
available in ACE. This class is one of the classes that is used to implement the Active 
Object pattern in ACE. All objects that wish to be “active” must derive from this class. 
You can also think of ACE_Task as being a higher level, more OO, thread class.  
You must have noticed something “bad” when we used the ACE_Thread wrapper, in the 
previous chapter. Most of the examples in that chapter were programs which were 
decomposed into functions, instead of objects. Why did this happen? Right, the 
ACE_Thread wrapper needs to be passed a global function name or a static method as an 
argument. This function (static method) is then used as the “start point” for the thread that 
is spawned. This naturally led to writing a function for each thread. As we saw this may 
result in non-object-oriented decomposition of programs.  
In contrast, ACE_Task deals with objects, and is thus easier to think about when building 
OO programs. Therefore, in most cases, it is better to use a subclass of ACE_Task when 
you need to build multi-threaded programs. There are several advantages in doing this. 
Foremost is what I just mentioned, i.e. this leads to better OO software. Second, you 
don’t have to worry about your thread entry point being static, since the entry point for 
ACE_Task is a regular member function. Furthermore, we will see that ACE_Task also 
includes an easy-to-use mechanism for communicating with other tasks.  
 
To reiterate what I just said, ACE_Task can be used as 

!" A Higher Level Thread (which we call a Task ). 
!" As an Active Object in the Active Object Pattern. 

 

Stru c tur e  of  a Ta s k 

An ACE_Task has a structure similar in nature to the structure of “Actors” in Actor Based 
Systems [III]. This structure is illustrated below: 
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Threads 

Underlying 
Message 
Queue 

Tasks in ACE 
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The above diagram shows that each Task contains one or more threads and an underlying 
message queue. Tasks communicate with each other through these message queues. 
However, the message queues are not entities that the programmer needs to be aware of. 
A sending task can just use the putq() call to insert a message into the message queue of 
another task. The receiving task can then extract this message from its own message 
queue by using the getq() call.  
Thus, you can think of a system of more or less autonomous tasks (or active objects) 
communicating with each other through their message queues. Such an architecture helps 
considerably in simplifying the programming model for multi-threaded programs.  
 

Cre a ting a nd using a Ta s k 

As mentioned above, to create a task or active object, you must subclass from the 
ACE_Task class. After subclassing, the following steps must be taken. 

!" Implementing Service Initialization and Termination Methods: The open() 
method should contain all task-specific initialization code. This may include 
resources such as connection control blocks, locks and memory. The close() 
method is the corresponding termination method. 

!" Calling the Activation method: After an Active Object is instantiated, you must 
activate it by calling activate(). The activate() method is passed, among other 
things, the number of threads that are to be created within the Active Object. The 
activate() method will cause the svc() method to be the starting point of all threads 
that are spawned by it.  

!" Implementing the Service Specific Processing Methods: As mentioned above, 
after an active object is activated, each new thread is started in the svc() method. 
This method must be defined in the subclass by the application developer. 

 
The following example illustrates how you would go about creating a task 
 
Example 1

#include "ace/OS.h"

#include "ace/Task.h"

class TaskOne: public ACE_Task<ACE_MT_SYNCH>{

public:

//Implement the Service Initialization and Termination methods

int open(void*){

ACE_DEBUG((LM_DEBUG,"(%t) Active Object opened \n"));

//Activate the object with a thread in it.

activate();

return 0;

}



 

 
 

55

int close(u_long){

ACE_DEBUG((LM_DEBUG, "(%t) Active Object being closed down \n"));

return 0;

}

int svc(void){

ACE_DEBUG((LM_DEBUG,

"(%t) This is being done in a separate thread \n"));

// do thread specific work here

//.......

//.......

return 0;

}

};

int main(int argc, char *argv[]){

//Create the task

TaskOne *one=new TaskOne;

//Start up the task

one->open(0);

//wait for all the tasks to exit

ACE_Thread_Manager::instance()->wait();

ACE_DEBUG((LM_DEBUG,"(%t) Main Task ends \n"));

}

 
The above example illustrates how ACE_Task can be used as a higher-level thread class. 
In the example, the class TaskOne derives from ACE_Task and implements the open(), 
close() and svc() methods. After the task object is instantiated, the open() method is 
invoked on it. This method in turn calls the activate() method, which causes a new thread 
to be spawned and started. The entry point for this thread is the svc() routine. The main 
thread waits for the active object thread to expire and then exits the process. 
 

C o m m unic a t ion b e t w e e n t a s k s 

As mentioned earlier, each task in ACE has an underlying message queue (see illustration 
above). This message queue is used as a means of communication between tasks. When 
one tasks wants to “talk” to another task, it creates a message and enqueues that message 
onto the message queue of the task that it wishes to talk to. The receiving task is usually 
on a getq() from its message queue. If no data is available in the queue, it falls asleep. If 
some other task has inserted something into its queue, it will wake up, pick up the data 
from its queue and process it.  Thus, in this case, the receiving task will receive the 
message from the sending task and respond to it in some application specific manner. 
This next example illustrates how two tasks communicate with each other using their 
underlying message queue. This example involves an implementation for the classic 
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producer-consumer problem. The Producer Task creates data, which it sends to the 
Consumer Task. The Consumer Task in turn consumes this data. Using the ACE_Task 
construct, we think of both the Producer and Consumers as separate objects of type 
ACE_Task. These tasks communicate with each other using the underlying message 
queue. 
 
Example 2

#include "ace/OS.h"

#include "ace/Task.h"

#include "ace/Message_Block.h"

//The Consumer Task.

class Consumer:

public ACE_Task<ACE_MT_SYNCH>{

public:

int open(void*){

ACE_DEBUG((LM_DEBUG, "(%t) Producer task opened \n"));

//Activate the Task

activate(THR_NEW_LWP,1);

return 0;

}

//The Service Processing routine

int svc(void){

//Get ready to receive message from Producer

ACE_Message_Block * mb =0;

do{

mb=0;

//Get message from underlying queue

getq(mb);

ACE_DEBUG((LM_DEBUG,

"(%t)Got message: %d from remote task\n",*mb->rd_ptr()));

}while(*mb->rd_ptr()<10);

return 0;

}

int close(u_long){

ACE_DEBUG((LM_DEBUG,"Consumer closes down \n"));

return 0;

}

};

class Producer:

public ACE_Task<ACE_MT_SYNCH>{

public:

Producer(Consumer * consumer):

consumer_(consumer), data_(0){

mb_=new ACE_Message_Block((char*)&data_,sizeof(data_));

}

int open(void*){
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ACE_DEBUG((LM_DEBUG, "(%t) Producer task opened \n"));

//Activate the Task

activate(THR_NEW_LWP,1);

return 0;

}

//The Service Processing routine

int svc(void){

while(data_<11){

//Send message to consumer

ACE_DEBUG((LM_DEBUG,

"(%t)Sending message: %d to remote task\n",data_));

consumer_->putq(mb_);

//Go to sleep for a sec.

ACE_OS::sleep(1);

data_++;

}

return 0;

}

int close(u_long){

ACE_DEBUG((LM_DEBUG,"Producer closes down \n"));

return 0;

}

private:

char data_;

Consumer * consumer_;

ACE_Message_Block * mb_;

};

int main(int argc, char * argv[]){

Consumer *consumer = new Consumer;

Producer * producer = new Producer(consumer);

producer->open(0);

consumer->open(0);

//Wait for all the tasks to exit. ACE_Thread_Manager::instance()->wait();

}

 
Here, each of the Producer and Consumer tasks are very similar. Neither has any service 
initialization or termination code. The svc() method for both classes is different, however. 
After the Producer is activated in the open() method, the svc() method is called. In this 
method, the Producer creates a message, which it inserts onto the consumer's queue. The 
message is created using the ACE_Message_Block class. (To read more about how to use 
ACE_Message_Block, please read the chapter on message queues in this guide and in the 
online ACE tutorials). The producer maintains a pointer to the consumer task (object). It 
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needs this pointer so it can enqueue a message onto the consumer's message queue. The 
pointer is set up in the main() function, through its constructor.  
The consumer sits in a loop in its svc() method and waits for data to come into its 
message queue. If there is no data on the message queue, the consumer blocks and falls 
asleep. (This is done auto-magically by the ACE_Task class). Once data does arrive on 
the consumer's queue, it wakes up and consumes the data.  
Here, the data that is sent by the producer consists of one integer. This integer is 
incremented by the producer each time, before being sent to the consumer.  
As you can see, the solution for the producer-consumer problem is simple and object-
oriented. Using the ACE_Thread wrapper, there is a good chance that a programmer 
would create a  solution  which would have a producer and consumer function for each of 
the threads.  ACE_Task is the better way to go when writing object-oriented multi-
threaded programs. 
 

T h e  A c t iv e  O bj e c t  P a t t e r n 

The Active Object pattern is used to decouple method execution from method invocation. 
This pattern facilitates another,  more transparent method for inter-task communication. 
This pattern uses the ACE_Task class as an active object. Methods are invoked on this 
object as if it were a regular object. That is, method invocation is done through the same 
old -> operator, the difference being that the execution of these methods occurs in the 
thread which is encapsulated within ACE_Task. The client programmer will see no 
difference, or only a minimal difference, when programming with passive or active 
objects. This is highly desirable for a framework developer, where you want to shield the 
client of the framework from the innards of how the framework is doing its work. Thus a 
framework USER does not have to worry about threads, synchronization, rendezvous, 
etc. 

H o w  th e A c tive  O bje c t Pa t t e r n Wor k s 

The Active Object pattern is one of the more complicated patterns that has been 
implemented in ACE and has several participants: 
The pattern has the following participants: 

1. An Active Object (based on an ACE_Task). 
2. An ACE_Activation_Queue. 
3. Several ACE_Method_Objects. (One method object is needed for each of the 

methods that the active object supports). 
4. Several ACE_Future Objects. (One is needed for each of the methods that returns 

a result). 
We have already seen how an ACE_Task creates and encapsulates a thread. To make an 
ACE_Task an active object, a few additional things have to be done. 
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A method object must be written for all the methods that are going to be called 
asynchronously from the client. Each Method Object that is written will derive from the 
ACE_Method_Object and will implement the call() method. Each Method Object also 
maintains context information (such as parameters, which are needed to execute the 
method and an ACE_Future Object, which is used to recover the return value. These 
values are maintained as private attributes). You can consider the method object to be the 
closure of the method call. When a client issues a method call, this causes the 
corresponding method object to be instantiated and then enqueued on the activation 
queue. The Method Object is a form of the Command pattern. (See the references on 
Design Patterns). 
The ACE_Activation_Queue is a queue on which the method objects are enqueued as 
they wait to be executed. Thus the activation queue contains all of the pending method 
invocations on it (in the form of method objects). The thread encapsulated in ACE_Task 
stays blocked, waiting for any method objects to be enqueued on the Activation Queue. 
Once a method object is enqueued, the task dequeues the method object and issues the 
call() method on it. The call() method should, in turn, call the corresponding 
implementation of that method in the ACE_Task. After the implementation method 
returns, the call() method set()s the result that is obtained in an ACE_Future object. 
The ACE_Future object is used by the client to obtain results for any asynchronous 
operations it may have issued on the active object. Once the client issues an 
asynchronous call, it is immediately returned an ACE_Future object. The client is then 
free to try to obtain the results from this future object whenever it pleases. If the client 
tries to extract the result from the future object before it has been set(), the client will 
block. If the client does not wish to block, it can poll the future object by using the 
ready() call. This method returns 1 if the result has been set and 0 otherwise. The 
ACE_Future object is based on the idea of “polymorphic  futures” [IV] 
The call() method should be implemented such that it sets the internal value of the 
returned ACE_Future object to the result obtained from calling the actual implementation 
method (this actual implementation method is written in ACE_Task). 
 
The following example illustrates how the active object pattern can be implemented. In 
this example, the Active Object is a “Logger” object. The Logger is sent messages which 
it is to log using a slow I/O system. Since the I/O system is slow, we do not want the 
main application tasks to be slowed down because of relatively non-time-critical logging. 
To prevent this, and to allow the programmer to issue the log calls as if they are normal 
method calls, we use the Active Object Pattern.  
 
The declaration for the Logger class is shown below: 
Example 3a

//The worker thread with which the client will interact

class Logger: public ACE_Task<ACE_MT_SYNCH>{

public:

//Initialization and termination methods

Logger();

virtual ~Logger(void);
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virtual int open (void *);

virtual int close (u_long flags = 0);

//The entry point for all threads created in the Logger

virtual int svc (void);

///////////////////////////////////////////////////////

//Methods which can be invoked by client asynchronously.

///////////////////////////////////////////////////////

//Log message

ACE_Future<u_long> logMsg(const char* msg);

//Return the name of the Task

ACE_Future<const char*> name (void);

///////////////////////////////////////////////////////

//Actual implementation methods for the Logger

///////////////////////////////////////////////////////

u_long logMsg_i(const char *msg);

const char * name_i();

private:

char *name_;

ACE_Activation_Queue activation_queue_;

};

As we can see, the Logger Active Object derives from ACE_Task and contains an 
ACE_Activation_Queue. The Logger supports two asynchronous methods, i.e. logMsg() 
and name(). These methods should be implemented such that when the client calls them, 
they instantiate the corresponding method object type and enqueue it onto the task's 
private activation queue.  The actual implementation for these two methods (which 
means the methods that “really” contain the code that does the requested job) are 
logMsg_i() and name_i(). 

The next segment shows the interfaces to the two method objects that we need, one for 
each of the two asynchronous methods in the Logger Active Object. 
Example 3b

//Method Object which implements the logMsg() method of the active //Logger active object

class

class logMsg_MO: public ACE_Method_Object{

public:

//Constructor which is passed a reference to the active object, the

//parameters for the method, and a reference to the future which

//contains the result.

logMsg_MO(Logger * logger, const char * msg,

ACE_Future<u_long> &future_result);

virtual ~logMsg_MO();

//The call() method will be called by the Logger Active Object

//class, once this method object is dequeued from the activation

//queue. This is implemented so that it does two things. First it
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//must execute the actual implementation method (which is specified

//in the Logger class. Second, it must set the result it obtains from

//that call in the future object that it has returned to the client.

//Note that the method object always keeps a reference to the same

//future object that it returned to the client so that it can set the

//result value in it.

virtual int call (void);

private:

Logger * logger_;

const char* msg_;

ACE_Future<u_long> future_result_;

};

//Method Object which implements the name() method of the active Logger //active object

class

class name_MO: public ACE_Method_Object{

public:

//Constructor which is passed a reference to the active object, the

//parameters for the method, and a reference to the future which

//contains the result.

name_MO(Logger * logger, ACE_Future<const char*> &future_result);

virtual ~name_MO();

//The call() method will be called by the Logger Active Object

//class, once this method object is dequeued from the activation

//queue. This is implemented so that it does two things. First it

//must execute the actual implementation method (which is specified

//in the Logger class. Second, it must set the result it obtains from

//that call in the future object that it has returned to the client.

//Note that the method object always keeps a reference to the same

//future object that it returned to the client so that it can set the

//result value in it.

virtual int call (void);

private:

Logger * logger_;

ACE_Future<const char*> future_result_;

};

 
Each of the method objects contains a constructor, which is used to create a closure for 
the method call. This means that the constructor ensures that the parameters and return 
values for the call are “remembered” by the object by recording them as private member 
data in the method object. The call method contains code that will delegate the actual 
implementation methods specified in the Logger Active Object (i.e. logMsg_i() and 
name_i()). 
This next segment of the example contains the implementation for the two Method 
Objects.  
Example 3c

//Implementation for the logMsg_MO method object.

//Constructor

logMsg_MO::logMsg_MO(Logger * logger, const char * msg, ACE_Future<u_long>

&future_result)
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:logger_(logger), msg_(msg), future_result_(future_result){

ACE_DEBUG((LM_DEBUG, "(%t) logMsg invoked \n"));

}

//Destructor

logMsg_MO::~logMsg_MO(){

ACE_DEBUG ((LM_DEBUG, "(%t) logMsg object deleted.\n"));

}

//Invoke the logMsg() method

int logMsg_MO::call (void){

return this->future_result_.set (

this->logger_->logMsg_i (this->msg_));

}

 
Example 3c

//Implementation for the name_MO method object.

//Constructor

name_MO::name_MO(Logger * logger, ACE_Future<const char*> &future_result):

logger_(logger), future_result_(future_result){

ACE_DEBUG((LM_DEBUG, "(%t) name() invoked \n"));

}

//Destructor

name_MO::~name_MO(){

ACE_DEBUG ((LM_DEBUG, "(%t) name object deleted.\n"));

}

//Invoke the name() method

int name_MO::call (void){

return this->future_result_.set (this->logger_->name_i ());

}

 
The implementation for these two methods object is quite straightforward. As was 
explained above, the constructor for the method object is responsible for creating a 
closure (capturing the input parameters and the result). The call() method calls the actual 
implementation methods and then sets the value in the future object by using its 
ACE_Future::set() method. 
 
This next segment of code shows the implementation for the Logger Active Object itself. 
Most of the code is in the svc() method. It is in this method that it dequeues method 
objects from the activation queue and invokes the call() method on them. 
Example 3d

//Constructor for the Logger

Logger::Logger(){

this->name_= new char[sizeof("Worker")];

ACE_OS:strcpy(name_,"Worker");

}

//Destructor

Logger::~Logger(void){

delete this->name_;

}
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//The open method where the active object is activated

int Logger::open (void *){

ACE_DEBUG ((LM_DEBUG, "(%t) Logger %s open\n", this->name_));

return this->activate (THR_NEW_LWP);

}

//Called then the Logger task is destroyed.

int Logger::close (u_long flags = 0){

ACE_DEBUG((LM_DEBUG, "Closing Logger \n"));

return 0;

}

//The svc() method is the starting point for the thread created in the

//Logger active object. The thread created will run in an infinite loop

//waiting for method objects to be enqueued on the private activation

//queue. Once a method object is inserted onto the activation queue the

//thread wakes up, dequeues the method object and then invokes the

//call() method on the method object it just dequeued. If there are no

//method objects on the activation queue, the task blocks and falls

//asleep.

int Logger::svc (void){

while(1){

// Dequeue the next method object (we use an auto pointer in

// case an exception is thrown in the <call>).

auto_ptr<ACE_Method_Object> mo

(this->activation_queue_.dequeue ());

ACE_DEBUG ((LM_DEBUG, "(%t) calling method object\n"));

// Call it.

if (mo->call () == -1)

break;

// Destructor automatically deletes it.

}

return 0;

}

//////////////////////////////////////////////////////////////

//Methods which are invoked by client and execute asynchronously.

//////////////////////////////////////////////////////////////

//Log this message

ACE_Future<u_long> Logger::logMsg(const char* msg){

ACE_Future<u_long> resultant_future;

//Create and enqueue method object onto the activation queue

this->activation_queue_.enqueue

(new logMsg_MO(this,msg,resultant_future));

return resultant_future;

}

//Return the name of the Task

ACE_Future<const char*> Logger::name (void){

ACE_Future<const char*> resultant_future;
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//Create and enqueue onto the activation queue

this->activation_queue_.enqueue

(new name_MO(this, resultant_future));

return resultant_future;

}

///////////////////////////////////////////////////////

//Actual implementation methods for the Logger

///////////////////////////////////////////////////////

u_long Logger::logMsg_i(const char *msg){

ACE_DEBUG((LM_DEBUG,"Logged: %s\n",msg));

//Go to sleep for a while to simulate slow I/O device

ACE_OS::sleep(2);

return 10;

}

const char * Logger::name_i(){

//Go to sleep for a while to simulate slow I/O device

ACE_OS::sleep(2);

return name_;

 
The last segment of code illustrates the application code, which instantiates the Logger 
Active Object and uses it for logging purposes. 
 
Example 3e

//Client or application code.

int main (int, char *[]){

//Create a new instance of the Logger task

Logger *logger = new Logger;

//The Futures or IOUs for the calls that are made to the logger.

ACE_Future<u_long> logresult;

ACE_Future<const char *> name;

//Activate the logger

logger->open(0);

//Log a few messages on the logger

for (size_t i = 0; i < n_loops; i++){

char *msg= new char[50];

ACE_DEBUG ((LM_DEBUG,

Issuing a non-blocking logging call\n"));

ACE_OS::sprintf(msg, "This is iteration %d", i);

logresult= logger->logMsg(msg);

//Don’t use the log result here as it isn't that important...

}

ACE_DEBUG((LM_DEBUG,
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"(%t)Invoked all the log calls \
and can now continue with other work \n"));

//Do some work over here...

// ...

// ...

//Find out the name of the logging task

name = logger->name ();

//Check to "see" if the result of the name() call is available

if(name.ready())

ACE_DEBUG((LM_DEBUG,"Name is ready! \n"));

else

ACE_DEBUG((LM_DEBUG,

"Blocking till I get the result of that call \n"));

//obtain the underlying result from the future object.

const char* task_name;

name.get(task_name);

ACE_DEBUG ((LM_DEBUG,

"(%t)==> The name of the task is: %s\n\n\n", task_name));

//Wait for all threads to exit.

ACE_Thread_Manager::instance()->wait();

}

The client code issues several non-blocking asynchronous calls on the Logger active 
object. Notice that the calls appear as if they are being made on a regular passive object. 
In fact, the calls are being executed in a separate thread of control. After issuing the calls 
to log multiple messages, the client then issues a call to determine the name of the task. 
This call returns a future to the client. The client then proceeds to check whether the 
result is set in the future object or not, using the ready() method. It then determines the 
underlying value in the future by using the get() method. Notice how elegant the client 
code is, with no mention of threads, synchronization, etc. Therefore, the active object 
pattern can be used to help make the lives of your clients a little bit easier. 
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T he  Re a c tor 
An Architectural Pattern for Event De-multiplexing and Dispatching 

The Reactor Pattern has been developed to provide an extensible OO framework for 
efficient event de-multiplexing and dispatching.  Current OS abstractions that are used 
for event de-multiplexing are difficult and complicated to use, and are therefore error-
prone. The Reactor pattern essentially provides for a set of higher-level programming 
abstractions that simplify the design and implementation of event-driven distributed 
applications. Besides this, the Reactor integrates together the de-multiplexing of several 
different kinds of events to one easy-to-use API. In particular, the Reactor handles timer-
based events, signal events, I/O-based port monitoring events and user-defined 
notifications uniformly. 
In this chapter, we describe how the Reactor is used to de-multiplex all of these different 
event types.  

R e a c t or C o m po n e n t s 
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As shown in the above figure, the Reactor in ACE works in conjunction with several 
components, both internal and external to itself. The basic idea is that the Reactor 
framework determines that an event has occurred (by listening on the OS Event De-
multiplexing Interface) and issues a “callbackÓ to a method in a pre-registered event 
handler object. This object is implemented by the application developer and contains 
application specific code to handle the event.  
The user (i.e., the application developer) must thus : 

1) Create an Event Handler to handle an event he is interested in. 

2) Register with the Reactor, informing it that he is interested in handling an event and at 
this time also passing a pointer to the event handler he wishes to handle the event. 

The Reactor framework then automatically will: 
1) The Reactor maintains tables internally, which associate different event types with 

event handler objects  

2) When an event occurs that the user had registered for, it issues a call back to the 
appropriate method in the handler. 

E v e n t H a n dl e r s 

The Reactor pattern is implemented in ACE as the ACE_Reactor class, which provides an 
interface to the reactor framework's functionality. 
As was mentioned above, the reactor uses event handler objects as the service providers 
which handle an event once the reactor has successfully de-multiplexed and dispatched it. 
The reactor therefore internally remembers which event-handler object is to be called 
back when a certain type of event occurs. This association between events and their event 
handlers is created when an application registers its handler object with the reactor to 
handle a certain type of event.  
Since the reactor needs to record which Event Handler is to be called back, it needs to 
know the type of all Event Handler object. This is achieved with the help of the 
substitution pattern (or in other words through inheritance of the “is a type of” variety). 
The framework provides an abstract interface class named ACE_Event_Handler from 
which all application specific event handlers MUST derive. (This causes each of the 
Application Specific Handlers to have the same type, namely ACE_Event_Handler, and 
thus they can be substituted for each other). For more detail on this concept, please see 
the reference on the Substitution Pattern [V]. 
If you notice the component diagram above, it shows that the event handler ovals consist 
of a blue Event_Handler portion, which corresponds to ACE_Event_Handler, and a white 
portion, which corresponds to the  application-specific portion.  
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This is illustrated in the class diagram below: 
 
 
 
 
 
 
 
 
 
 
The ACE_Event_Handler class has several different  “handle” methods, each of which 
are used to handle different kinds of events. When an application programmer is 
interested in a certain event, he subclasses the ACE_Event_Handler class and implements 
the handle methods that he is interested in. As mentioned above, he then proceeds to 
“register” his event handler class for that particular event with the reactor. The reactor 
will then make sure that when the event occurs, the appropriate “handle” method in the 
appropriate event handler object is called back automatically.  
Once again, there are basically three steps to using the ACE_Reactor: 

!" Create a subclass of ACE_Event_Handler and implement the correct “handle_” 
method in your subclass to handle the type of event you wish to service with this 
event handler. (See table below to determine which “handle_” method you need to 
implement. Note that you may use the same event handler object to handle 
multiple types of events, and thus may overload more then one of the “handle_” 
methods.) 

!" Register your Event handler with the reactor by calling register_handler() on the 
reactor object.  

!" As events occur, the reactor will automatically call back the correct “handle_” 
method of the event handler object that was previously registered with the Reactor 
to process that event. 

A simple example should help to make this a little clearer. 
 
Example 1

#include <signal.h>

#include ”ace/Reactor.h”

#include ”ace/Event_Handler.h”

//Create our subclass to handle the signal events

//that we wish to handle. Since we know that this particular

//event handler is going to be using signals we only overload the

ACE_Event_Handler 

int handle_input() 
int handle_output() 
É 

Application Handler2 

int handle_output() 
int get_handle() 

 

Application Handler1

int handle_input() 
int get_handle() 
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//handle_signal method.

class

MyEventHandler: public ACE_Event_Handler{

int

handle_signal(int signum, siginfo_t*,ucontext_t*){

switch(signum){

case SIGWINCH:

ACE_DEBUG((LM_DEBUG, ”You pressed SIGWINCH \n”));

break;

case SIGINT:

ACE_DEBUG((LM_DEBUG, ”You pressed SIGINT \n”));

break;

}

return 0;

}

};

int main(int argc, char *argv[]){

//instantiate the handler

MyEventHandler *eh =new MyEventHandler;

//Register the handler asking to call back when either SIGWINCH

//or SIGINT signals occur. Note that in both the cases we asked the //Reactor to call

back the same Event_Handler i.e., MyEventHandler. //This is the reason why we had to

write a switch statement in the //handle_signal() method above. Also note that the

ACE_Reactor is //being used as a Singleton object (Singleton pattern)

ACE_Reactor::instance()->register_handler(SIGWINCH,eh);

ACE_Reactor::instance()->register_handler(SIGINT,eh);

while(1)

//Start the reactors event loop

ACE_Reactor::instance()->handle_events();

}

In the above example, we first create a sub-class of ACE_Event_Handler in which we 
overload the handle_signal() method, since we intend to use this handler to handle 
various types of signals. In the main routine, we instantiate our handler and then call 
register_handler on the ACE_Reactor Singleton, specifying that we wish the event 
handler ’eh’ to be called back when either SIGWINCH (signal on terminal window 
change) or SIGINT (interrupt signal, usually ^C) occur. After this, we start the reactor's 
event loop by calling handle_events() in an infinite loop. Whenever either of the events 
happen the reactor will call back the eh->handle_signal() method automatically, passing 
it the signal number which caused the callback, and the siginfo_t structure (see 
siginfo.h for more on siginfo_t).  
Notice the use of the Singleton pattern to obtain a reference to the global reactor object. 
Most applications require a single reactor and thus ACE_Reactor comes complete with 
the instance() method which insures that whenever this method is called, the same 
ACE_Reactor instance is returned. (To read more about the Singleton Pattern please see 
the Design Patterns reference [ VI].) 
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The following table shows which methods must be overloaded in the subclass of 
ACE_Event_Handler to process different event types. 

 
Handle Methods in 

ACE_Event_Handler 
Overloaded in subclass to be used to handle event of type: 

handle_signal() Signals. When any signal is registered with the reactor, it will call back this 
method automatically when the signal occurs. 

handle_input() Input from I/O device. When input is available on an I/O handle (such as a file 
descriptor in UNIX), this method will be called back by the reactor 
automatically. 

handle_exception() Exceptional Event. When an exceptional event occurs on an event that has 
been registered with the reactor (for example, if SIGURG (Urgent Signal) is 
received), then this method will be automatically called back. 

handle_timeout() Timer. When the time for any registered timer expires, this method will be 
called back automatically. 

handle_output() Output possible on I/O device. When the output queue of an I/O device has 
space available on it, this method will automatically be called back.   

Re gis tr a t ion of  E ve n t H a ndle rs 

As we saw in the example above, an event handler is registered to handle a certain event 
by calling the register_handler() method on the reactor. The register_handler() method is 
overloaded, i.e. there are  actually several methods for registering different event types, 
each called register_handler(), but having a different signature, i.e. the methods differ in 
their arguments. The register_handler() methods basically take the handle/event_handler 
tuple or the signal/event_handler tuple as arguments and add it to the reactor's internal 
dispatch tables. When an event occurs on handle, it finds the corresponding 
event_handler in its internal dispatch table and automatically calls back the appropriate 
method on the event_handler it finds. More details of specific calls to register handlers 
will be illustrated in later sections. 

Re m ov a l a nd life tim e m a n a g e m e nt of  E ve n t H a ndlers 

Once the required event has been processed, it may not be necessary to keep the event 
handler registered with the reactor. The reactor thus offers techniques to remove an event 
handler from its internal dispatch tables. Once the event handler is removed, it will no 
longer be called back by the reactor.  
An example of such a situation could be a server which serves multiple clients. The 
clients connect to the server, have it perform some work and then disconnect later. When 
a new client connects to the server, an event handler object is instantiated and registered 
in the server's reactor to handle all I/O from this client. When the client disconnects then 
the server must remove the event handler from the reactor's dispatch queue, since it no 
longer expects any further I/O from the client. In this example, the client/server 
connection may be closed down, which leaves the I/O handle (file descriptor in UNIX) 
invalid. It is important that such a defunct handle be removed from the Reactor, since, if 
this is not done, the Reactor will mark the handle as “ready for reading” and continually 
call back the handle_input() method of the event handler forever. 
There are several techniques to remove an event handler from the reactor.  
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Implicit Removal of Event Handlers from the Reactors Internal dispatch tables 

The more common technique to remove a handler from the reactor is implicit removal. 
Each of the “handle_” methods of the event handler returns an integer to the reactor. If 
this integer is 0, then the event handler remains registered with the reactor after the 
handle method is completed. However, if the “handle_” method returns <0,  then the 
reactor will automatically call back the handle_close() method of the Event Handler and 
remove it from its internal dispatch tables. The handle_close() method is used to perform 
any handler specific cleanup that needs to be done before the event handler is removed, 
which may include things like deleting dynamic memory that had been allocated by the 
handler or closing log files. 
In the example described above, it is necessary to actually remove the event handler from 
memory. Such removal can also occur in the handle_close() method of the concrete event 
handler class. Consider the following concrete event handler: 
class MyEventHandler: public ACE_Event_Handler{

public:

MyEventHandler(){//construct internal data members}

virtual int

handle_close(ACE_HANDLE handle, ACE_Reactor_Mask mask){

delete this; //commit suicide

}

~MyEventHandler(){//destroy internal data members}

private:

//internal data members

}

This class deletes itself when it is de-registers from the reactor and the handle_close() 
hook method is called. It is VERY important however that MyEventHandler is always 
allocated dynamically otherwise the global memory heap may be corrupted. One way to 
ensure that the class is always created dynamically is to move the destructor into the 
private section of the class. For example: 
class MyEventHandler: public ACE_Event_Handler{

public:

MyEventHandler(){//construct internal data members}

virtual int handle_close(ACE_HANDLE handle, ACE_Reactor_Mask mask){

delete this; //commit suicide}

private:

//Class must be allocated dynamically

~MyEventHandler(){//destroy internal data members}

};

 
Explicit removal of Event Handlers from the Reactors Internal Dispatch Tables 

Another way to remove an Event Handler from the reactor's internal tables is to explicitly 
call the remove_handler() set of methods of the reactor. This method is also overloaded, 
as is register_handler(). It takes the handle or the signal number whose handler is to be 
removed and removes it from the reactor’s internal dispatch tables. When the 
remove_handler() is called, it also calls the handle_close() method of the Event Handler 
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(which is being removed) automatically. This can be controlled by passing in the mask 
ACE_Event_Handler::DONT_CALL to the remove_handler() method, which causes the 
handle_close() method NOT to be called. More specific examples of the use of 
remove_handler() will be shown in the next few sections. 
 

E v e n t H a n dlin g w i t h t h e  R e a c tor 

In the next few sections, we will illustrate how the Reactor is used to handle various 
types of events. 

I/O E ve n t D e-m ultiple x ing 

The Reactor can be used to handle I/O device based input events by overloading the 
handle_input() method in the concrete event handler class. Such I/O may be on disk files, 
pipes, FIFOs or network sockets. For I/O device-based event handling, the Reactor 
internally uses the handle to the device which is obtained from the operating system. (The 
handle on UNIX-based system is the file descriptor returned by the OS when a file or 
socket is opened. In Windows the handle is a handle to the device returned by 
Windows.).  One of the most useful applications of such de-multiplexing is obviously for 
network applications. The following example will help illustrate how the reactor may be 
used in conjunction with the concrete acceptor to build a server.  
 
Example 2

#include ”ace/Reactor.h”

#include ”ace/SOCK_Acceptor.h”

#define PORT_NO 19998

typedef ACE_SOCK_Acceptor Acceptor;

//forward declaration

class My_Accept_Handler;

class

My_Input_Handler: public ACE_Event_Handler{

public:

//Constructor

My_Input_Handler(){

ACE_DEBUG((LM_DEBUG,”Constructor\n”);

}

//Called back to handle any input received

int

handle_input(ACE_HANDLE){

//receive the data

peer().recv_n(data,12);

ACE_DEBUG((LM_DEBUG,”%s\n”,data));
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// do something with the input received.

// ...

//keep yourself registered with the reactor

return 0;

}

//Used by the reactor to determine the underlying handle

ACE_HANDLE

get_handle()const {

return this->peer_i().get_handle();

}

//Returns a reference to the underlying stream.

ACE_SOCK_Stream &

peer_i(){

return this->peer_;

}

private:

ACE_SOCK_Stream peer_;

char data [12];

};

class

My_Accept_Handler: public ACE_Event_Handler{

public:

//Constructor

My_Accept_Handler(ACE_Addr &addr){

this->open(addr);

}

//Open the peer_acceptor so it starts to ”listen”

//for incoming clients.

int

open(ACE_Addr &addr){

peer_acceptor.open(addr);

return 0;

}

//Overload the handle input method

int

handle_input(ACE_HANDLE handle){

//Client has requested connection to server.

//Create a handler to handle the connection

My_Input_Handler *eh= new My_Input_Handler();

//Accept the connection ”into” the Event Handler

if (this->peer_acceptor.accept (eh->peer (), // stream

0, // remote address

0, // timeout

1) ==-1) //restart if interrupted

ACE_DEBUG((LM_ERROR,”Error in connection\n”));
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ACE_DEBUG((LM_DEBUG,”Connection established\n”));

//Register the input event handler for reading

ACE_Reactor::instance()->

register_handler(eh,ACE_Event_Handler::READ_MASK);

//Unregister as the acceptor is not expecting new clients

return -1;

}

//Used by the reactor to determine the underlying handle

ACE_HANDLE

get_handle(void) const{

return this->peer_acceptor.get_handle();

}

private:

Acceptor peer_acceptor;

};

int main(int argc, char * argv[]){

//Create an address on which to receive connections

ACE_INET_Addr addr(PORT_NO);

//Create the Accept Handler which automatically begins to “listen”

//for client requests for connections

My_Accept_Handler *eh=new My_Accept_Handler(addr);

//Register the reactor to call back when incoming client connects

ACE_Reactor::instance()->register_handler(eh,

ACE_Event_Handler::ACCEPT_MASK);

//Start the event loop

while(1)

ACE_Reactor::instance()->handle_events();

}

 
In the above example, two concrete event handlers are created. The first concrete event 
handler, My_Accept_Handler, is used to accept and establish incoming connections 
from clients. The other event handler is My_Input_Handler, which is used to handle the 
connection after it has been established. Thus My_Accept_Handler accepts the 
connection and delegates the actual handling off to My_Input_Handler.  
 
 
 
 
 
 
 
 
 

Main Routine Reactor My_Accept_Handler My_Input_Handler 

creates
registers

get_handle()  

creates
handle input ()

get_handle()  

handle_input()  
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In the above example, first we create an ACE_INET_Addr object passing it the port on 
which we wish to accept connections. Next, an object of type My_Accept_Handler is 
instantiated. The address object is then passed to My_Accept_Handler through its 
constructor. My_Accept_Handler has an underlying “concrete acceptor” (read more 
about concrete acceptors in the chapter  on “IPC”) which it uses to establish the 
connection. The constructor of My_Accept_Handler delegates the “listening” for new 
connections to the open() method of this concrete acceptor. After the handler starts 
listening for connections it is registered with the reactor informing it that it is to be called 
back when a new connection request is received. To do this, we call register_handler() 
with the mask  “ACE_Event_Handler::ACCEPT_MASK”.  
When the reactor is told to register the handler, it performs a “double dispatch” to 
determine the underlying handle of the event handler. To do this, it calls the get_handle() 
method. Since the reactor uses the get_handle() method to determine the handle to the 
underlying stream, it is necessary that this method be implemented in 
My_Accept_Handler. In this example, we simply call get_handle() on the concrete 
acceptor, which returns the appropriate handle to the reactor. 
Once a new connection request is received on this handle, the reactor will automatically 
call back the handle_input() method of My_Accept_Handler. The Accept Handler then 
instantiates a new Input Handler and calls accept() on the concrete acceptor to actually 
establish the connection. Notice that the underlying stream of the Input Handler is passed 
in as the first argument to the accept() call. This causes the stream in the newly 
instantiated input handler to be set to the new stream which has just been created after 
establishment of the connection (by the accept() call). The Accept Handler then registers 
the Input Handler with the reactor, informing it to call back if any input is available to 
read (using ACE_Event_Handler::READ_MASK). It then returns -1, which causes it to be 
removed from the reactor's internal event dispatch tables.  
When any input now arrives from the client, My_Input_Handler::handle_input() will 
automatically be called back by the reactor. Note that in the handle_input() method of 
My_Input_Handler, 0 is returned to the reactor. This indicates that we wish to keep it 
registered, whereas in My_Accept_Handler we insured that is was de-registered  by 
returning -1 in its handle_input() method. 
Besides the READ_MASK and ACCEPT_MASK that are used in the example above, 
there are several other masks that can be used when registering and removing handles 
from the reactor. These masks are shown in the table below, and  can be used in 
conjunction with the register_handler() and remove_handler() methods. Each mask 
insures different behavior of the reactor  when it calls back an event handler, usually 
meaning a different “handle” method is to be called. 

MASK Calls back method When Used with 
ACE_Event_Handler::
READ_MASK

handle_input(). When there is data 
available to read on the 
handle. 

register_handler() 

ACE_Event_Handler::
WRITE_MASK

handle_output(). When there is room 
available on the I/O 
devices output buffer and 

register_handler() 
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new data can be sent to 
it. 

ACE_Event_Handler::
TIMER_MASK

handle_close(). Passed to handle_close() 
to indicate the reason for 
calling it was a time-out.  

Acceptor and Connectors 
handle_timeout methods 
and NOT by the Reactor. 

ACE_Event_Handler::
ACCEPT_MASK

handle_input(). When a client request for 
a new connection is 
heard on the OS’s 
internal listen queue. 

register_handler() 

ACE_Event_Handler::
CONNECT_MASK

handle_input(). When the connection has 
been established. 

register_handler() 

ACE_Event_Handler::
DONT_CALL

None. Insures that the 
handle_close() method of 
the Event_Handler is 
NOT called when the 
reactor's 
remove_handler() 
method is called.  

remove_handler() 

 
 

T i m e r s 

The Reactor also includes methods to schedule timers, which on expiry call back the 
handle_timeout() method of the appropriate event handler. To schedule such timers, the 
reactor has a schedule_timer() method. This method is passed the event handler ,whose 
handle_timeout() method is to be called back, and the delay in the form of an 
ACE_Time_Value object. In addition, an interval may also be specified which causes the 
timer to be reset automatically after it expires. 
Internally, the Reactor maintains an ACE_Timer_Queue which maintains all of the timers 
in the order in which they are to be scheduled. The actual data structure used to hold the 
timers can be varied by using the set_timer_queue() method of the reactor. Several 
different timer structures are available to use with the reactor, including timer wheels, 
timer heaps and hashed timer wheels. These are discussed in a later section in detail. 

A C E_T im e_V alu e 

The ACE_Time_Value object is a wrapper class which encapsulates the data and time 
structure of the underlying OS platform. It is based on the timeval structure available on 
most UNIX operating systems, which stores absolute time in seconds and micro-seconds. 
Other OS platforms, such as POSIX and Win32, use slightly different representations. 
This class encapsulates these differences and provides a portable C++ interface.  
The ACE_Time_Value class uses operator overloading, which provides for simple 
arithmetic additions, subtractions and comparisons. Methods in this class are 
implemented to “normalize” time quantities. Normalization adjusts the two fields in a 
timeval struct to use a canonical encoding scheme that ensures accurate comparisons. 
(For more see Appendix and Reference Guide). 
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S e t ting a nd Re m oving T im ers 

The following example illustrates how timers can be used with the reactor. 
 
Example 3

#include ”test_config.h”

#include ”ace/Timer_Queue.h”

#include ”ace/Reactor.h”

#define NUMBER_TIMERS 10

static int done = 0;

static int count = 0;

class Time_Handler : public ACE_Event_Handler

{

public:

//Method which is called back by the Reactor when timeout occurs.

virtual int handle_timeout (const ACE_Time_Value &tv,

const void *arg){

long current_count = long (arg);

ACE_ASSERT (current_count == count);

ACE_DEBUG ((LM_DEBUG, ”%d: Timer #%d timed out at %d!\n”,

count, current_count, tv.sec()));

//Increment count

count ++;

//Make sure assertion doesn’t fail for missing 5th timer.

if (count ==5)

count++;

//If all timers done then set done flag

if (current_count == NUMBER_TIMERS - 1)

done = 1;

//Keep yourself registered with the Reactor.

return 0;

}

};

int

main (int, char *[])

{

ACE_Reactor reactor;

Time_Handler *th=new Time_Handler;

int timer_id[NUMBER_TIMERS];

int i;

for (i = 0; i < NUMBER_TIMERS; i++)

timer_id[i] = reactor.schedule_timer (th,

(const void *) i, // argument sent to handle_timeout()

ACE_Time_Value (2 * i + 1)); //set timer to go off with delay
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//Cancel the fifth timer before it goes off

reactor.cancel_timer(timer_id[5]);//Timer ID of timer to be removed

while (!done)

reactor.handle_events ();

return 0;

}

In the above example, an event  handler, Time_Handler is first set up to handle the time-
outs by implementing the handle_timeout() method. The main routine instantiates an 
object of type Time_Handler and schedules multiple timers (10 timers) using the 
schedule_timer() method of the reactor. This method takes, as arguments, a pointer to the 
handler which will be called back, the time after which the timer will go off and an 
argument that will be sent to the handle_timeout() method when it is called back. Each 
time schedule_timer() is called, it returns a unique timer identifier which is stored in the 
array timer_id[] . This identifier may be used to cancel that timer at any time. An example 
of canceling a timer is also shown in the above example, where the fifth timer is canceled 
by calling the reactor's cancel_timer() method after all the timers have been initially 
scheduled. We cancel this timer by using its timer_id as an argument to the 
cancel_timer() method of the reactor. 

U sing diffe r e nt T im er Q u e u e s 

Different environments may require different ways of scheduling and canceling timers. 
The performance of algorithms to implement timers become an issue when any of the 
following are true: 

• Fine granularity timers are required. 
• The number of outstanding timers at any one time can potentially be very large. 
• The algorithm is implemented using hardware interrupts which are too expensive. 

ACE allows the user to choose from among several timers which pre-exist in ACE, or to 
develop their own timers to an interface defined for timers. The different timers available 
in ACE are detailed in the following table: 

 
Timer Description of data structure Performance 

ACE_Timer_Heap The timers are stored in a heap implementation 
of a priority queue.  

Cost of schedule_timer()= O(lg n) 
Cost of cancel_timer()= O(lgn) 
Cost of finding current timer O(1) 

ACE_Timer_List The timers are stored in a doubly linked list .. 
insertions are..??  

Cost of schedule_timer()= O(n) 
Cost of cancel_timer()=  O(1) 
Cost of finding current timer O(1) 

ACE_Timer_Hash This structure used in this case is a variation on 
the timer wheel algorithm. The performance is 
highly dependent on the hashing function used. 

Cost of schedule_timer()= Worst = O(n) 
Best = O(1) 
Cost of cancel_timer()=  O(1) 
Cost of finding current timer O(1) 

ACE_Timer_Wheel The timers are stored in  an array of “pointers to 
arrays”. With each array being pointed to is  
sorted. 

Cost of schedule_timer()= Worst =O(n) 
Cost of cancel_timer()=  O(1) 
Cost of finding current timer O(1) 

See reference [VII] on Timers for more. 
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H a n dlin g S ig n a ls 

As we saw in example 1, the Reactor includes methods to allow the handling of signals. 
The Event Handler which handles the signals should overload the handle_signal() 
method, since this will be called back by the reactor when the signal occurs. To register 
for a signal, we use one of the register_handler() methods, as was illustrated in example 
1. When interest in a certain signal ends, the handler can be removed and restored to the 
previously installed signal handler by calling remove_handler(). The Reactor internally 
uses the sigaction() system  call to set and reset signal handlers. Signal handling can also 
be done without the reactor  by using the ACE_Sig_Handlers class and its associated 
methods. 

One important difference in using the reactor for handling signals and using the 
ACE_Sig_Handlers class is that the reactor-based mechanism only allows the application 
to associate one event handler with each signal. The ACE_Sig_Handlers class however 
allows multiple event handlers to be called back when a signal occurs. 

U sin g N o t ifi c a t ion s 

The reactor not only issues call backs when system events occur, but can also call back 
handlers  when user defined events occur. This is done through the reactor's 
“Notification” interface, which consists of two methods, notify() and 
max_notify_iterations().  
The reactor can be explicitly instructed to issue a callback on a certain event handler 
object by using the notify() method. This is very useful when the reactor is used in 
conjunction with message queues or with co-operating tasks. Good examples of this kind 
of usage can be found when the  ASX framework components are used with the reactor. 
The max_notify_iterations() method informs the reactor to perform only the specified 
number of “iterations” at a time. Here, "iterations" refers to the number of “notifications” 
that can occur in a single handle_events() call. Thus if max_notify_iterations() is used to 
set the max number of iterations to  20, and 25 notifications arrive simultaneously, then 
the handle_events() method will only service 20 of the notifications at a time. The 
remaining five notifications will be handled when handle_events() is called the next time 
in the event loop. 
An example will help illustrate these ideas further: 
Example 4

#include ”ace/Reactor.h”

#include ”ace/Event_Handler.h”

#include ”ace/Synch_T.h”

#include ”ace/Thread_Manager.h”

#define WAIT_TIME 1

#define SLEEP_TIME 2

class My_Handler: public ACE_Event_Handler{
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public:

//Start the event handling process.

My_Handler(){

ACE_DEBUG((LM_DEBUG,”Event Handler created\n”));

ACE_Reactor::instance()->max_notify_iterations(5);

return 0;

}

//Perform the notifications i.e., notify the reactor 10 times

void perform_notifications(){

for(int i=0;i<10;i++)

ACE_Reactor::instance()->

notify(this,ACE_Event_Handler::READ_MASK);

}

//The actual handler which in this case will handle the notifications

int handle_input(ACE_HANDLE){

ACE_DEBUG((LM_DEBUG,”Got notification # %d\n”,no));

no++;

return 0;

}

private:

static int no;

};

//Static members

int My_Handler::no=1;

int main(int argc, char *argv[]){

ACE_DEBUG((LM_DEBUG,”Starting test \n”));

//Instantiating the handler

My_Handler handler;

//The done flag is set to not done yet.

int done=0;

while(1){

//After WAIT_TIME the handle_events will fall through if no events

//arrive.

ACE_Reactor::instance()->handle_events(ACE_Time_Value(WAIT_TIME));

if(!done){

handler.perform_notifications();

done=1;

}

sleep(SLEEP_TIME);

}

}

In the above example,  a concrete handler is created as usual and the handle_input() 
method is overload, as it would be if we were expecting our handler to handle input data 
from an I/O device. The handler also contains an open() method, which performs 
initialization for the handler, and a method which actually performs the notifications. 
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In the main() function, we first instantiate an instance of our concrete handler. The 
constructor of the handler insures that the number of max_notify_iterations is set to 5 by 
using the max_notify_iterations() method of the reactor. After this, the reactor’s event 
handling loop is started.  
One major difference in the event-handling loop to be noted here is that handle_events() 
is passed an ACE_Time_Value. If no events occur within this time, then the 
handle_events() method will fall through. After handle_events() falls through, 
perform_notifications() is called, which uses the reactor’s notify() method to request it to 
notify the handler that is passed in as an argument of the occurrence of an event. The 
reactor will then proceed to use the mask that it is passed to perform an upcall on the 
appropriate “handle” method of the handler. In this case, we use notify() to inform our 
event handler of input by passing it the ACE_Event_Handler::READ_MASK. This causes 
the reactor to call back the handle_input() method of the handler.  
Since we have set the max_notify_iterations to 5 therefore only 5 of the notifications will 
actually be issued by the reactor during one call to handle_events(). To make this clear, 
we stop the reactive event loop for SLEEP_TIME before issuing the next call to 
handle_events().  
The above example is overly simplistic and very non-realistic, since the notifications 
occur in the same thread as the reactor. A more realistic example would be of events 
which occur in another thread and which then notify the reactor thread of these events. 
The same example with a different thread to perform the notifications is shown below: 
 
Example 5

#include ”ace/Reactor.h”

#include ”ace/Event_Handler.h”

#include ”ace/Synch_T.h”

#include ”ace/Thread_Manager.h”

class My_Handler: public ACE_Event_Handler{

public:

//Start the event handling process.

My_Handler(){

ACE_DEBUG((LM_DEBUG,”Got open\n”));

activate_threads();

ACE_Reactor::instance()->max_notify_iterations(5);

return 0;

}

//Spawn a separate thread so that it notifies the reactor

void activate_threads(){

ACE_Thread_Manager::instance()

->spawn((ACE_THR_FUNC)svc_start,(void*)this);

}

//Notify the Reactor 10 times.

void svc(){

for(int i=0;i<10;i++)

ACE_Reactor::instance()->

notify(this, ACE_Event_Handler::READ_MASK);

}
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//The actual handler which in this case will handle the notifications

int handle_input(ACE_HANDLE){

ACE_DEBUG((LM_DEBUG, ”Got notification # %d\n”, no));

no++;

return 0;

}

//The entry point for the new thread that is to be created.

static int svc_start(void* arg);

private:

static int no;

};

//Static members

int My_Handler::no=1;

int My_Handler::svc_start(void* arg){

My_Handler *eh= (My_Handler*)arg;

eh->svc();

return -1; //de-register from the reactor

}

int main(int argc, char *argv[]){

ACE_DEBUG((LM_DEBUG,”Starting test \n”));

My_Handler handler;

while(1){

ACE_Reactor::instance()->handle_events();

sleep(3);

}

}

This example is very similar to the previous example, except for a few additional 
methods to spawn a thread and then activate it in the event handler. In particular, the 
constructor of the concrete handler My_Handler calls the activate method. This method 
uses the ACE_Thread_Manager::spawn() method to spawn a separate thread with its 
entry point as svc_start().  
The svc_start() method calls perform_notifications() and the notifications are sent to the 
reactor, but this time they are sent from this new thread instead of from the same thread 
that the reactor resides in. Note that the entry point of the thread, svc_start(),was defined 
as a static method in the function, which then called the non-static svc() method. This is a 
requirement when using thread libraries, i.e. the entry point of a thread be a static 
function with file scope. 
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T he A c c eptor and Conne c tor 
Patterns for connection establishment 

The Acceptor/Connector pattern has been designed to decouple connection establishment 
from the service which is performed after the connection has been established. For 
example, in a WWW browser, the service or “actual work” performed is the parsing and 
displaying of the HTML page that has been received by the client browser. Connection 
establishment may be of secondary significance, and is probably done through the BSD 
sockets interface or some other equivalent IPC mechanism. The usage of these patterns 
will allow the programmer to focus on this actual “work” with minimal concern as to 
how the connection between the server and client is actually made. On the flip side, the 
programmer can also fine tune the connection establishment policies independent of the 
service routines he may have written or is about to write.  
Since this pattern decouples the service from the connection establishment method, it is 
very easy to change either one without affecting the other. This allows for code re-use 
both of pre-written connection establishment mechanisms and of pre-written service 
routines. In the same example, the browser programmer using these patterns could 
initially build his system and run it using a certain connection establishment mechanism 
and test it. Later, he may decide that he wishes to change the underlying connection 
mechanism to be multi-threaded, using a thread pool policy perhaps,  if the previous 
connection mechanism proved undesirable for the browser he has built. Using this 
pattern, this could be achieved with a minimal amount of effort, due to the strict de-
coupling it provides. 
You need to read:  

You will have to read through the chapter on the Reactor and on IPC_SAP (in particular 
the section on acceptors and connectors) before you will be able to clearly understand 
many of the examples shown in this chapter, and especially to understand the more 
advanced section. In addition, you may have to refer to the section on threads and thread 
management. 

Chapter 

7
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T H E  A C C E P T O R PAT T E R N  

An acceptor is usually used where you would imagine you would use the BSD accept() 
system call, as was discussed in the chapter on stand-alone acceptors. The Acceptor 
Pattern is also applicable in the same situation, but as we will see, provides a lot more 
functionality. In ACE, the acceptor pattern is implemented with the help of a “Factory” 
which is named ACE_Acceptor. A factory is a class which is used to abstract the 
instantiation process of helper objects (usually). It is common in OO designs for a 
complex class to delegate certain functions to a helper class. The choice of which class 
the complex class creates as a helper and then delegates to may have to be flexible. This 
flexibility is afforded with the help of a factory. Thus a factory allows an object to  
change its underlying strategies by changing the object that it delegates the work to. The 
factory, however, provides the same interface to the applications which are using the 
factory, and thus the client code may not need to be changed at all. (Read more about 
factories in the reference on “Design Patterns”). 
 
 
 
 
 
 
The ACE_Acceptor factory allows an application developer to change the “helper” 
objects used for:  

!" Passive Connection Establishment 
!" Handling of the connection after establishment 

Similarly, the ACE_Connector factory allows an application developer to change the 
“helper” objects used for: 

!" Active Connection Establishment 
!" Handling of the connection after establishment 

The following discussion applies equally to acceptors and connectors, so I will just talk 
about acceptors here and the argument will hold equally well for connectors.  
The ACE_Acceptor has been implemented as a template container, which is instantiated 
with two classes as its actual parameters. The first implements the particular service (and 
is of type ACE_Event_Handler,  since it is to be used to handle I/O events and must be 
from the event handling hierarchy of classes) that the application is to perform after it 
establishes its connection, and the second is a “concrete” acceptor (of the variety that was 
discussed in the chapter on IPC_SAP).  
An important point to note is that the ACE_Acceptor factory and the underlying concrete 
acceptor that is used are both very different things. The concrete acceptor can be used 

Client 

Factory 
Helper object 

Helper object 
Helper object 

? 
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independently of the ACE_Acceptor factory without having anything to do with the 
acceptor pattern that we are discussing here. (The independent usage of acceptors was 
discussed and illustrated in the chapter on IPC_SAP). The ACE_Acceptor factory is 
intrinsic to this pattern and cannot be used without an underlying concrete acceptor. Thus 
ACE_Acceptor USES the underlying concrete acceptors to establish connections. As we 
have seen, there are several classes which come bundled with ACE which can be used as 
the second parameter (i.e., the concrete acceptor class) to the ACE_Acceptor factory 
template. However the service handling class must be implemented by the application 
developer and must be of type ACE_Event_Handler. The ACE_Acceptor factory could be 
instantiated as: 

typedef ACE_Acceptor<My_Service_Handler,ACE_SOCK_ACCEPTOR> MyAcceptor;

Here MyAcceptor has been passed the event handler called My_Service_Handler and 
the concrete acceptor ACE_SOCK_ACCEPTOR. ACE_SOCK_ACCEPTORis a TCP 
acceptor based on the BSD sockets stream family. (See table at the end of this section and 
in IPC chapter for different types of acceptors that can be passed to the acceptor factory). 
Note once again that, when using the acceptor  pattern, we always deal with two 
acceptors. The factory acceptor called ACE_Acceptor and one of the concrete acceptors 
which are available in ACE, such as  ACE_SOCK_ACCEPTOR. (You can create custom 
concrete acceptors which would replace ACE_SOCK_ACCEPTORbut you probably 
won't change anything in the ACE_Acceptor factory class). 

Important Note: ACE_SOCK_ACCEPTOR is actually a macro defined as: 
#define ACE_SOCK_ACCEPTOR ACE_SOCK_Acceptor, ACE_INET_Addr

The use of this macro was deemed necessary since typedefs inside a class don’t 
work for compilers on certain platforms. If this hadn’t been the case, then 
ACE_Acceptor would have been instantiated as: 
typedef ACE_Acceptor<My_Service_Handler,ACE_SOCK_Acceptor>

MyAcceptor;

The macros are illustrated in the table at the end of this section. 
  

C O MP O N E N T S 

As is clear from the above discussion, there are three major participant classes in the 
Acceptor pattern: 

!" The concrete acceptor, which contains a specific strategy for establishing a 
connection which is tied to an underlying transport protocol mechanism. 
Examples of different concrete acceptors that can be used in ACE are 
ACE_SOCK_ACCEPTOR (uses TCP to establish the connection), 
ACE_LSOCK_ACCEPTOR (uses UNIX domain sockets to establish the 
connection), etc.  

!" The concrete service handler, which is written by the application developer and 
whose open() method is called back automatically when the connection has been 
established. The acceptor framework assumes that the service handling class is of 
type ACE_Event_Handler, which is an interface class defined in ACE (This class 
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was discussed in detail in the chapter on the Reactor). Another class which has 
been exclusively created for service handling for the acceptor and connector 
patterns is ACE_Svc_Handler. This class is based not only on the 
ACE_Event_Handler interface (which is necessary to use the Reactor ), but also 
on the ACE_Task classes, which are used in the ASX Streams Framework. The 
ACE_Task classes provide the ability to create separate threads, use message 
queues to store incoming data messages, to process them concurrently and several 
other useful functions. This extra functionality can be obtained if the concrete 
service handler that is used with the acceptor pattern is created by deriving from 
ACE_Svc_Handler instead of ACE_Event_Handler. The usage of the extra 
functionality available in ACE_Svc_Handler is discussed in detail in the advanced 
sections of this chapter. In the following discussion we will use the 
ACE_Svc_Handler as our event handler. One important difference between a 
simple ACE_Event_Handler and the ACE_Svc_Handler class is that the service 
handler contains an underlying communication stream component (of the variety 
discussed in the IPC SAP chapter). This stream is set when the ACE_Svc_Handler 
template is instantiated. In the case of ACE_Event_Handler, we had to add the I/O 
communication endpoint (i.e. the stream object) as a private data member of the 
event handler ourselves. Thus, in this case the application developer creates his 
service handler as a subclass of the ACE_Svc_Handler class and implements the 
open() method as the first method which will be called back automatically by the 
framework. In addition, since ACE_Svc_Handler is a template, the 
communication stream component and the locking mechanism are passed in as 
template parameters.  

!"  The reactor, which is used in conjunction with the ACE_Acceptor. As we will 
see, after instantiating the acceptor we start the reactor’s event handling loop. The 
reactor, as explained earlier, is an event-dispatching class and in this case is used 
by the acceptor to handle the dispatching of the connection establishment event to 
the appropriate service handling routine. 

U S A G E 

Further understanding of the Acceptor can be gained by looking at a simple example. 
This example is of a simple application which uses the acceptor to accept connections 
and then call back the service routine. When the service routine is called back, it just lets 
the user know that the connection has been established successfully.   
 
Example 1

#include ”ace/Reactor.h”

#include ”ace/Svc_Handler.h”

#include ”ace/Acceptor.h”

#include ”ace/Synch.h”

#include ”ace/SOCK_Acceptor.h”

//Create a Service Handler whose open() method will be called back //automatically. This

class MUST derive from ACE_Svc_Handler which is an //interface and as can be seen is a

template container class itself. The //first parameter to ACE_Svc_Handler is the
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underlying stream that it //may use for communication. Since we are using TCP sockets the

stream //is ACE_SOCK_STREAM. The second is the internal synchronization //mechanism it

could use. Since we have a single threaded application we //pass it a “null” lock which

will do nothing.

class My_Svc_Handler:

public ACE_Svc_Handler <ACE_SOCK_STREAM,ACE_NULL_SYNCH>{

//the open method which will be called back automatically after the //connection has been

established.

public:

int open(void*){

cout<<”Connection established”<<endl;

}

};

// Create the acceptor as described above.

typedef ACE_Acceptor<My_Svc_Handler,ACE_SOCK_ACCEPTOR> MyAcceptor;

int main(int argc, char* argv[]){

//create the address on which we wish to connect. The constructor takes //the port

number on which to listen and will automatically take the //host’s IP address as the IP

Address for the addr object

ACE_INET_Addr addr(PORT_NUM);

//instantiate the appropriate acceptor object with the address on which //we wish to

accept and the Reactor instance we want to use. In this //case we just use the global

ACE_Reactor singleton. (Read more about //the reactor in the previous chapter)

MyAcceptor acceptor(addr, ACE_Reactor::instance());

while(1)

// Start the reactor’s event loop

ACE_Reactor::instance()->handle_events();

}

 
In the above example, we first create an endpoint address on which we wish to accept. 
Since we have decided to use TCP/IP as the underlying connection protocol, we create an 
ACE_INET_Addr as our endpoint and pass it the port number we want it to listen on. We 
pass this address and an instance of the reactor singleton to the acceptor that we 
instantiate after this. This acceptor, after being instantiated, will automatically accept any 
connection requests on PORT_NUM and call back My_Svc_Handler’s open() method after 
establishing connections for such requests. Notice that when we instantiated the 
ACE_Acceptor factory, we passed it the concrete acceptor we wanted to use, i.e. 
ACE_SOCK_ACCEPTOR, and the concrete service handler we wanted to use, i.e. 
My_Svc_Handler.  
Now let’s try something a bit more interesting. In the next example, we will register our 
service handler back with the reactor after it is called back on connection establishment. 
Now, if any data comes on the newly created connection, then our service handling 
routines handle_input() method would be called back automatically. Thus in this 
example, we are using the features of both the reactor and acceptor together: 
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Example 2

#include ”ace/Reactor.h”

#include ”ace/Svc_Handler.h”

#include ”ace/Acceptor.h”

#include ”ace/Synch.h”

#include ”ace/SOCK_Acceptor.h”

#define PORT_NUM 10101

#define DATA_SIZE 12

//forward declaration

class My_Svc_Handler;

//Create the Acceptor class

typedef ACE_Acceptor<My_Svc_Handler,ACE_SOCK_ACCEPTOR>

MyAcceptor;

//Create a service handler similar to as seen in example 1. Except this //time include

the handle_input() method which will be called back //automatically by the reactor when

new data arrives on the newly //established connection

class My_Svc_Handler:

public ACE_Svc_Handler <ACE_SOCK_STREAM,ACE_NULL_SYNCH>{

public:

My_Svc_Handler(){

data= new char[DATA_SIZE];

}

int open(void*){

cout<<”Connection established”<<endl;

//Register the service handler with the reactor

ACE_Reactor::instance()->register_handler(this,

ACE_Event_Handler::READ_MASK);

return 0;

}

int handle_input(ACE_HANDLE){

//After using the peer() method of ACE_Svc_Handler to obtain a

//reference to the underlying stream of the service handler class

//we call recv_n() on it to read the data which has been received.

//This data is stored in the data array and then printed out

peer().recv_n(data,DATA_SIZE);

ACE_OS::printf(”<< %s\n”,data);

//keep yourself registered with the reactor

return 0;

}

private:

char* data;

};

int main(int argc, char* argv[]){

ACE_INET_Addr addr(PORT_NUM);

//create the acceptor
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MyAcceptor acceptor(addr, //address to accept on

ACE_Reactor::instance()); //the reactor to use

while(1)

//Start the reactor’s event loop

ACE_Reactor::instance()->handle_events();

}

 
The only difference between this example and the previous one is that we register the 
service handler with the reactor in the open() method of our service handler. We 
consequently have to write a handle_input() method which will be called back by the 
reactor when data comes in on the connection. In this case we just print out the data we 
receive on the screen. The peer() method of the ACE_Svc_Handler class is a useful 
method which returns a reference to the underlying peer stream. We use the recv_n() 
method of the underlying stream wrapper class to obtain the data received on the 
connection.  
The real power of this pattern lies in the fact that the underlying connection establishment 
mechanism is fully encapsulated in the concrete acceptor. This can very easily be 
changed. In the next example, we change the underlying connection establishment 
mechanism so that it uses UNIX domain sockets instead of TCP sockets, as we were 
using before. The example, again with minimal changes (underlined), is as follows: 

Example3

class My_Svc_Handler:

public ACE_Svc_Handler <ACE_LSOCK_STREAM,ACE_NULL_SYNCH>{

public:

int open(void*){

cout<<”Connection established”<<endl;

ACE_Reactor::instance()

->register_handler(this,ACE_Event_Handler::READ_MASK);

}

int handle_input(ACE_HANDLE){

char* data= new char[DATA_SIZE];

peer().recv_n(data,DATA_SIZE);

ACE_OS::printf(”<< %s\n”,data);

return 0;

}

};

typedef ACE_Acceptor<My_Svc_Handler,ACE_LSOCK_ACCEPTOR> MyAcceptor;

int main(int argc, char* argv[]){

ACE_UNIX_Addr addr(”/tmp/addr.ace”);

MyAcceptor acceptor(address, ACE_Reactor::instance());

while(1) /* Start the reactor’s event loop */

ACE_Reactor::instance()->handle_events();

}
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The differences between example 2 and example 3 are underlined. As noted, the 
differences between the two programs are very minimal. However they both use very 
different connection establishment paradigms. Some of the connection establishment 
mechanisms that are available in ACE are listed in the table below. 
 

Type of 
Acceptor 

Address used Stream used Concrete Acceptor 

TCP stream 
Acceptor 

ACE_INET_Addr ACE_SOCK_STREAM ACE_SOCK_ACCEPTOR

UNIX domain 
local stream socket 

acceptor 

ACE_UNIX_Addr ACE_LSOCK_STREAM ACE_LSOCK_ACCEPTOR

PIPES as the 
underlying 

communication 
mechanism 

ACE_SPIPE_Addr ACE_SPIPE_STREAM ACE_SPIPE_ACCEPTOR

 

T H E C O N N E C T O R 

The Connector is very similar to the Acceptor. It is also a factory, but in this case it is 
used to actively connect to a remote host. After the connection has been established, it 
will automatically call back the open() method of the appropriate service handling object. 
The connector is usually used where you would use the BSD connect() call. In ACE, the 
connector, just like the acceptor, is implemented as a template container class called 
ACE_Connector. As mentioned earlier, it takes two parameters, the first being the event 
handler class which is to be called when the connection is established and the second 
being a “concrete” connector class .  

You MUST note that the underlying concrete connector and the factory ACE_Connector 
are both very different things. The ACE_Connector factory USES the underlying 
concrete connector to establish the connection. The ACE_Connector factory then USES 
the appropriate event or service handling routine (the one passed in through its template 
argument)  to handle the new connection after the connection has been established by the 
concrete connector. The concrete connectors can be used without the ACE_Connector 
factory as we saw in the IPC chapter.  The ACE_Connector factory, however, cannot be 
used without a concrete connector class (since it is this class which actually handles 
connection establishment).  

An example of instantiating the ACE_Connector class is: 
typedef ACE_Connector<My_Svc_Handler,ACE_SOCK_CONNECTOR> MyConnector;

The second parameter in this case is the concrete connector class 
ACE_SOCK_CONNECTOR. The connector, like the acceptor pattern, uses the reactor 
internally to call back the open() method of the service handler when the connection has 
been established. We can reuse the service handling routines we had written for the 
previous examples with the connector.  
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An example using the connector should make this clearer. 

Example 4

typedef ACE_Connector<My_Svc_Handler,ACE_SOCK_CONNECTOR> MyConnector;

int main(int argc, char * argv[]){

ACE_INET_Addr addr(PORT_NO,HOSTNAME);

My_Svc_Handler * handler= new My_Svc_Handler;

//Create the connector

MyConnector connector;

//Connects to remote machine

if(connector.connect(handler,addr)==-1)

ACE_ERROR(LM_ERROR,”%P|%t, %p”,”Connection failed”);

//Registers with the Reactor

while(1)

ACE_Reactor::instance()->handle_events();

}

In the above example, PORT_NO and HOSTNAME are the machine and port we wish to 
actively connect to. After instantiating the connector, we call its connect method, passing 
it the service routine that is to be called back when the connection is fully established, 
and the address that we wish to connect to.  
 

U SIN G T H E A C C E P T O R A N D C O N N E C T O R T O G E T H E R 

The Acceptor and Connector patterns will, in general, be used together. In a client-server 
application, the server will typically contain the acceptor, whereas a client will contain 
the connector. However, in certain applications, both the acceptor and connector may be 
used together. An example of such an application is given below. In this example, a 
single message is repeatedly sent to the peer machine, and at the same time another 
message is received from the remote. Since two functions must be performed at the same 
time, an easy solution is to send and receive messages in separate threads.  
This example contains both an acceptor and a connector. The user can take arguments at 
the command prompt and tell the application whether it is going to play a server or client 
role. The application will then call main_accept() or main_connect() as appropriate. 

Example 5

#include ”ace/Reactor.h”

#include ”ace/Svc_Handler.h”

#include ”ace/Acceptor.h”

#include ”ace/Synch.h”

#include ”ace/SOCK_Acceptor.h”

#include ”ace/Thread.h”

//Add our own Reactor singleton

typedef ACE_Singleton<ACE_Reactor,ACE_Null_Mutex> Reactor;



 

 
 

92

//Create an Acceptor

typedef ACE_Acceptor<MyServiceHandler,ACE_SOCK_ACCEPTOR> Acceptor;

//Create a Connector

typedef ACE_Connector<MyServiceHandler,ACE_SOCK_CONNECTOR> Connector;

class MyServiceHandler:

public ACE_Svc_Handler<ACE_SOCK_STREAM,ACE_NULL_SYNCH>{

public:

//Used by the two threads “globally” to determine their peer stream

static ACE_SOCK_Stream* Peer;

//Thread ID used to identify the threads

ACE_thread_t t_id;

int open(void*){

cout<<”Acceptor: received new connection”<<endl;

//Register with the reactor to remember this handle

Reactor::instance()

->register_handler(this,ACE_Event_Handler::READ_MASK);

//Determine the peer stream and record it globally

MyServiceHandler::Peer=&peer();

//Spawn new thread to send string every second

ACE_Thread::spawn((ACE_THR_FUNC)send_data,0,THR_NEW_LWP,&t_id);

//keep the service handler registered by returning 0 to the

//reactor

return 0;

}

static void* send_data(void*){

while(1){

cout<<”>>Hello World”<<endl;

Peer->send_n(”Hello World”,sizeof(”Hello World”));

//Go to sleep for a second before sending again

ACE_OS::sleep(1);

}

return 0;

}

int handle_input(ACE_HANDLE){

char* data= new char[12];

//Check if peer aborted the connection

if(Peer.recv_n(data,12)==0){

cout<<”Peer probably aborted connection”);

ACE_Thread::cancel(t_id); //kill sending thread ..

return -1; //de-register from the Reactor.

}

//Show what you got..

cout<<”<< %s\n”,data”<<endl;

//keep yourself registered
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return 0;

}

};

//Global stream identifier used by both threads

ACE_SOCK_Stream * MyServiceHandler::Peer=0;

void main_accept(){

ACE_INET_Addr addr(PORT_NO);

Acceptor myacceptor(addr,Reactor::instance());

while(1)

Reactor::instance()->handle_events();

return 0;

}

void main_connect(){

ACE_INET_Addr addr(PORT_NO,HOSTNAME);

Connector myconnector;

myconnector.connect(my_svc_handler,addr);

while(1)

Reactor::instance()->handle_events();

}

int main(int argc, char* argv[]){

// Use ACE_Get_Opt to parse and obtain arguments and then call the

// appropriate function for accept or connect.

...

}

 
This is a simple example which illustrates how the acceptor and connector patterns can be 
used in combination to produce a service handling routine which is completely decoupled 
from the underlying network establishment method. The above example can be easily 
changed to use any other underlying network establishment protocol, by changing the 
appropriate template parameters for the concrete connector and acceptor.  
 

A d v a n c e d S e c t ion s 

The following sections give a more detailed explanation of how the Acceptor and 
Connector patterns actually work. This is required if you wish to tune the service 
handling and connection establishment policies. This includes tuning the creation and 
concurrency strategy of your service handling routine and the connection establishment 
strategy that the underlying concrete connector will use. In addition, there is a section 
which explains how you can use the advanced features you automatically get by using the 
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ACE_Svc_Handler classes. Lastly, we show how you can use a simple lightweight 
ACE_Event_Handler with the acceptor and connector patterns.  

T H E A C E_S V C_H A N DL E R C L A SS 

The ACE_Svc_Handler class, as mentioned above, is based both on ACE_Task, which is 
a part of the ASX Streams framework, and on the ACE_Event_Handler interface class. 
Thus an ACE_Svc_Handler is both a Task and an Event Handler. Here we will give you a 
brief introduction to ACE_Task and what you can do with ACE_Svc_Handler.  

 
ACE_Task 

ACE_Task has been designed to be used with the ASX Streams framework, which is 
based on the streams facility in UNIX System V. ASX is also very similar in design to 
the X-kernel protocol tools built by Larry Peterson [VIII].  
The basic idea in ASX is that an incoming message is assigned to a stream. This stream is 
constructed out of several modules. Each module performs some fixed function on the 
incoming message, which is then passed on to the next module for further processing 
until it reaches the end of the stream. The actual processing in the module is done by 
tasks. There are usually two tasks to each module, one for processing incoming messages 
and one for processing outgoing messages. This kind of a structure is very useful when 
constructing protocol stacks. Since each module used has a fixed simple interface, 
modules can be created and easily re-used across different applications. For example, 
consider an application that processes incoming messages from the data link layer. The 
programmer would construct several modules, each dealing with a different level of the 
protocol processing. Thus, he would construct a separate module to do network layer 
processing, another for transport layer processing and still another for presentation layer 
processing. After constructing these modules they can be chained together into a stream 
(with the help of ASX) and used. At a later time, if a new (and perhaps better) transport 
module is created, then the earlier transport module can be replaced  in the stream 
without affecting anything else in the program. Note that the module is like a container 
which contains tasks. The tasks are the actual processing elements. A module may need 
to have two tasks, as in the example above, or may just need one. ACE_Task, as you may 
have guessed, is the implementation of the processing elements in the modules which are 
called tasks.  
 
An Architecture: Communicating Tasks 

Each ACE_Task has an internal message queue that is its means of communicating with 
other tasks, modules or the outside world. If one ACE_Task wishes to send a message to 
another task, it will enqueue the message on the destination tasks message queue. Once 
the task receives the message, it will immediately begin processing it.  
Every ACE_Task can run as zero or more threads. Messages can be enqueued and 
dequeued by multiple threads on an ACE_Task’s message queue without the programmer 
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worrying about corrupting any of the data structures. Thus tasks may be used as the 
fundamental architectural component of a system of co-operating threads. Each thread of 
control can be encapsulated in an ACE_Task, which interacts with other tasks by sending 
messages to their message queues, which they process and then respond to. 
The only problem with this kind of architecture is that tasks can only communicate with 
each other through their message queues within the same process. The ACE_Svc_Handler 
solves this problem. ACE_Svc_Handler inherits from both ACE_Task and 
ACE_Event_Handler, and adds a private data stream. This combination makes it possible 
for an ACE_Svc_Handler object to act as a task that has the ability to react to events and 
to send and receive data between remote tasks on remote hosts. 
ACE_Task has been implemented as a template container, which is instantiated with a 
locking mechanism, the lock being used to insure the integrity of the internal message 
queue in a multi-threaded environment. As mentioned earlier, ACE_Svc_Handler is also 
a template container which is passed not only the locking mechanism, but also the 
underlying data stream that it will use for communication to remote tasks.  
 
Creating an ACE_ Svc_Handler 

The ACE_Svc_Handler template is instantiated to create the desired service handler by 
passing in the locking mechanism and the underlying stream. If no lock is to be used, as 
would be done if the application was only single threaded, it can be instantiated with 
ACE_NULL_SYNCH, as we did above. However, if we intend to use it in  a multi-
threaded application (which is the common case), it would be done as: 
class MySvcHandler:

public ACE_Svc_Handler<ACE_SOCK_STREAM,ACE_MT_SYNCH>{

...

}

 
Creating multiple threads in the Service Handler 

In Example 5 above, we created a separate thread to send data to the remote peer using 
the ACE_Thread wrapper class and its static spawn() method. When we did this, 
however, we had to define the send_data() method, which was written at file scope 
using the C++ static specifier. The consequence of this, of course, was that we couldn’t 
access any data members of the actual object we had instantiated. In other words, we 
were forced to make the send_data() member function class-wide when  this was NOT 
what we wanted to do. The only reason this was done was because 
ACE_Thread::spawn() can only use a static member function as the entry point for the 
thread it creates. Another adverse side affect was that a reference to the peer stream had 
to be made static also. In short, this wasn’t the best way this code could have been 
written.  
ACE_Task provides a nice mechanism to avoid this problem. Each ACE_Task has an 
activate() method which can be called to create threads for the ACE_Task. The entry 
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point of the created thread will be in the non-static member function svc(). Since svc() is 
a non-static member function, it can call any object instance-specific data or member 
functions. ACE hides all the nitty-gritty of how this is done from the programmer. The 
activate() method is very versatile. It allows the programmer to create multiple threads, 
all of which use the svc() method as their entry point. Thread priorities, handles, names, 
etc. can also be set. The method prototype for activate is: 
// = Active object activation method.

virtual int activate (long flags = THR_NEW_LWP,

int n_threads = 1,

int force_active = 0,

long priority = ACE_DEFAULT_THREAD_PRIORITY,

int grp_id = -1,

ACE_Task_Base *task = 0,

ACE_hthread_t thread_handles[] = 0,

void *stack[] = 0,

size_t stack_size[] = 0,

ACE_thread_t thread_names[] = 0);

The first parameter, flags, describes desired properties of the threads which are to be 
created. These are described in detail on the chapter on threads. The possible flags  here 
are: 
THR_CANCEL_DISABLE, THR_CANCEL_ENABLE, THR_CANCEL_DEFERRED,

THR_CANCEL_ASYNCHRONOUS, THR_BOUND, THR_NEW_LWP, THR_DETACHED,

THR_SUSPENDED, THR_DAEMON, THR_JOINABLE, THR_SCHED_FIFO,

THR_SCHED_RR, THR_SCHED_DEFAULT

The second parameter, n_threads, specifies the number of threads to be created. The third 
parameter, force_active, is used to specify whether new threads should be created, even if 
the activate() method has already been called previously, and thus the task or service 
handler is already running multiple threads. If this is set to false (0), then if activate() is 
called again, it will result in the failure code being set and no further threads will be 
spawned.  
The fourth parameter is used to set the priority of the running threads. By default, or if 
the priority is set to ACE_DEFAULT_THREAD_PRIORITY, an ”appropriate” priority 
value for the given scheduling policy (specified in flags e.g., THR_SCHED_DEFAULT) 
is used.  This value is calculated dynamically, and is the median value between the 
minimum and maximum priority values for the given policy.  If an explicit value is given, 
it is used.  Note that actual priority values are EXTREMELY implementation-dependent, 
and are probably best avoided. More can be read on priorities of threads on the chapter on 
threads. 
Thread Handles, Thread names and stack spaces for the threads to be created can be 
passed in, to be used by the thread creation calls. If these are null they are not used. 
However if multiple threads are created using activate, it will be necessary to pass either 
names or handles for the threads before they can be used effectively. 
An example will help in further understanding how the activate method may be used: 
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Example 6

#include ”ace/Reactor.h”

#include ”ace/Svc_Handler.h”

#include ”ace/Acceptor.h”

#include ”ace/Synch.h”

#include ”ace/SOCK_Acceptor.h”

class MyServiceHandler; //forward declaration

typedef ACE_Singleton<ACE_Reactor,ACE_Null_Mutex> Reactor;

typedef ACE_Acceptor<MyServiceHandler,ACE_SOCK_ACCEPTOR> Acceptor;

class MyServiceHandler:

public ACE_Svc_Handler<ACE_SOCK_STREAM,ACE_MT_SYNCH>{

// The two thread names are kept here

ACE_thread_t thread_names[2];

public:

int open(void*){

ACE_DEBUG((LM_DEBUG, ”Acceptor: received new connection \n”));

//Register with the reactor to remember this handler..

Reactor::instance()

->register_handler(this,ACE_Event_Handler::READ_MASK);

ACE_DEBUG((LM_DEBUG,”Acceptor: ThreadID:(%t) open\n”));

//Create two new threads to create and send messages to the

//remote machine.

activate(THR_NEW_LWP,

2, //2 new threads

0, //force active false, if already created don’t try again.

ACE_DEFAULT_THREAD_PRIORITY,//Use default thread priority

-1,

this,//Which ACE_Task object to create? In this case this one.

0,// don’t care about thread handles used

0,// don’t care about where stacks are created

0,//don’t care about stack sizes

thread_names); // keep identifiers in thread_names

//keep the service handler registered with the acceptor.

return 0;

}

void send_message1(void){

//Send message type 1

ACE_DEBUG((LM_DEBUG,”(%t)Sending message::>>”));

//Send the data to the remote peer

ACE_DEBUG((LM_DEBUG,”Sent message1”));

peer().send_n(”Message1”,LENGTH_MSG_1);

} //end send_message1

int send_message2(void){

//Send message type 1
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ACE_DEBUG((LM_DEBUG,”(%t)Sending message::>>”));

//Send the data to the remote peer

ACE_DEBUG((LM_DEBUG,”Sent Message2”));

peer().send_n(”Message2”,LENGTH_MSG_2);

}//end send_message_2

int svc(void){

ACE_DEBUG( (LM_DEBUG,”(%t) Svc thread \n”));

if(ACE_Thread::self()== thread_names[0])

while(1) send_message1(); //send message 1s forever

else

while(1) send_message2(); //send message 2s forever

return 0; // keep the compiler happy.

}

int handle_input(ACE_HANDLE){

ACE_DEBUG((LM_DEBUG,”(%t) handle_input ::”));

char* data= new char[13];

//Check if peer aborted the connection

if(peer().recv_n(data,12)==0){

printf(”Peer probably aborted connection”);

return -1; //de-register from the Reactor.

}

//Show what you got..

ACE_OS::printf(”<< %s\n”,data);

//keep yourself registered

return 0;

}

};

int main(int argc, char* argv[]){

ACE_INET_Addr addr(10101);

ACE_DEBUG((LM_DEBUG,”Thread: (%t) main”));

//Prepare to accept connections

Acceptor myacceptor(addr,Reactor::instance());

// wait for something to happen.

while(1)

Reactor::instance()->handle_events();

return 0;

}

In this example, activate() is called after the service handler is registered with the reactor 
in its open() method. It is used to create 2 threads. The names of the threads are 
remembered so that when they call the svc() routine, we can distinguish between them. 
Each thread sends a different type of message to the remote peer. Notice that in this case 
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the thread creation is totally transparent. In addition, since the entry point is a normal 
non-static member function, it is used without any ugly changes to remember data 
members, such as the peer stream. We can simply call the member function peer() to 
obtain the underlying stream whenever we need it.  
 
Using the message queue facilities in the Service Handler 

As mentioned before, the ACE_Svc_Handler class has a built in message queue. This 
message queue is used as the primary communication interface between an 
ACE_Svc_Handler and the outside world. Messages that other tasks wish to send to the 
service handler are enqueued into its message queue. These messages may then be 
processed in a separate thread (created by calling the activate() method). Yet another 
thread may then take the processed message and send it across the network to a different 
remote destination (quite possibly to another ACE_Svc_Handler).  
As mentioned earlier, in this multi-threaded scenario the ACE_Svc_Handler will 
automatically ensure that the integrity of the message queue is maintained with the use of 
locks. The lock used will be the same lock which was passed when the concrete service 
handler was created by instantiating the ACE_Svc_Handler template class. The reason 
that the locks are passed in this way is so that the programmer may “tune” his 
application. Different locking mechanisms on different platforms have different amounts 
of overhead. If required, the programmer may create his own optimized lock, which 
obeys the ACE interface for a lock and use this lock with the service handler. This is just 
another example of the kind of flexibility that the programmer can achieve by using 
ACE. The important thing that the programmer MUST be aware of is that additional 
threads in the service handling routines WILL cause significant locking overhead. To 
keep this overhead down to a minimum, the programmer must design his program 
carefully, ensuring that such overhead is minimized. In particular, the example described 
above probably will have excessive overhead and may be infeasible in most situations. 
ACE_Task and thus ACE_Svc_Handler (as the service handler is a type of task) has 
several methods which can be used to set, manipulate, enqueue and dequeue from the 
underlying queue. We will discuss only a few of these methods here. Since a pointer to 
the message queue itself can be obtained in the service handler (by using the msg_queue() 
method), all public methods on the underlying queue (i.e. ACE_Message_Queue) may 
also be invoked directly. (For further details on all the methods the message queue 
provides, please see the next chapter on message queues.) 
The underlying message queue for the service handler, as mentioned above, is an instance 
of  ACE_Message_Queue, which is created automatically by the service handler.  In most 
cases it is not necessary to call the underlying methods of ACE_Message_Queue, as most 
of them have wrappers in the ACE_Svc_Handler class. An ACE_Message_Queue is a 
queue which enqueues and dequeues ACE_Message_Blocks. Each of these 
ACE_Message_Blocks contains a pointer to a reference-counted ACE_Data_Block, which 
in turn points to the actual data stored in the block. (See next chapter on Message 
Queues). This allows for easy sharing of the data between ACE_Message_Blocks.  
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The main purpose of ACE_Message_Blocks is to allow efficient manipulation of data 
without much copying overhead. A read pointer and write pointer are provided with each 
message block. The read pointer will be incremented forward in the data block whenever 
we read from the block. Similarly, the write pointer moves forward when we write into 
the block, much like it would in a stream-type system. An ACE_Message_Blocks can be 
passed an allocator through its constructor that it then uses for allocating memory (See 
chapter on Memory Management for more on Allocators). For example, it may use the 
ACE_Cached_Allocation_Strategy, which pre-allocates memory and then will return 
pointers in the memory pool instead of actually allocating memory on the heap when it is 
required. Such functionality is useful when predictable performance is required, as in 
real-time systems. 
The following example will show how to use some of the message queues functionality. 
Example 7

#include ”ace/Reactor.h”

#include ”ace/Svc_Handler.h”

#include ”ace/Acceptor.h”

#include ”ace/Synch.h”

#include ”ace/SOCK_Acceptor.h”

#include ”ace/Thread.h”

#define NETWORK_SPEED 3

class MyServiceHandler; //forward declaration

typedef ACE_Singleton<ACE_Reactor,ACE_Null_Mutex> Reactor;

typedef ACE_Acceptor<MyServiceHandler,ACE_SOCK_ACCEPTOR> Acceptor;

class MyServiceHandler:

public ACE_Svc_Handler<ACE_SOCK_STREAM,ACE_MT_SYNCH>{

// The message sender and creator threads are handled here.

ACE_thread_t thread_names[2];

public:

int open(void*){

ACE_DEBUG((LM_DEBUG, ”Acceptor: received new connection \n”));

//Register with the reactor to remember this handler..

Reactor::instance()

->register_handler(this,ACE_Event_Handler::READ_MASK);

ACE_DEBUG((LM_DEBUG,”Acceptor: ThreadID:(%t) open\n”));

//Create two new threads to create and send messages to the

//remote machine.

activate(THR_NEW_LWP,

2, //2 new threads

0,

ACE_DEFAULT_THREAD_PRIORITY,

-1,

this,

0,

0,

0,

thread_names); // identifiers in thread_handles
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//keep the service handler registered with the acceptor.

return 0;

}

void send_message(void){

//Dequeue the message and send it off

ACE_DEBUG((LM_DEBUG,”(%t)Sending message::>>”));

//dequeue the message from the message queue

ACE_Message_Block *mb;

ACE_ASSERT(this->getq(mb)!=-1);

int length=mb->length();

char *data =mb->rd_ptr();

//Send the data to the remote peer

ACE_DEBUG((LM_DEBUG,”%s \n”,data,length));

peer().send_n(data,length);

//Simulate very SLOW network.

ACE_OS::sleep(NETWORK_SPEED);

//release the message block

mb->release();

} //end send_message

int construct_message(void){

// A very fast message creation algorithm

// would lead to the need for queuing messages..

// here. These messages are created and then sent

// using the SLOW send_message() routine which is

// running in a different thread so that the message

//construction thread isn’t blocked.

ACE_DEBUG((LM_DEBUG,”(%t)Constructing message::>> ”));

// Create a new message to send

ACE_Message_Block *mb;

char *data=”Hello Connector”;

ACE_NEW_RETURN (mb,ACE_Message_Block (16,//Message 16 bytes long

ACE_Message_Block::MB_DATA,//Set header to data

0,//No continuations.

data//The data we want to send

), 0);

mb->wr_ptr(16); //Set the write pointer.

// Enqueue the message into the message queue

// we COULD have done a timed wait for enqueuing in case

// someone else holds the lock to the queue so it doesn’t block

//forever..

ACE_ASSERT(this->putq(mb)!=-1);

ACE_DEBUG((LM_DEBUG,”Enqueued msg successfully\n”));

}
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int svc(void){

ACE_DEBUG( (LM_DEBUG,”(%t) Svc thread \n”));

//call the message creator thread

if(ACE_Thread::self()== thread_names[0])

while(1) construct_message(); //create messages forever

else

while(1) send_message(); //send messages forever

return 0; // keep the compiler happy.

}

int handle_input(ACE_HANDLE){

ACE_DEBUG((LM_DEBUG,”(%t) handle_input ::”));

char* data= new char[13];

//Check if peer aborted the connection

if(peer().recv_n(data,12)==0){

printf(”Peer probably aborted connection”);

return -1; //de-register from the Reactor.

}

//Show what you got..

ACE_OS::printf(”<< %s\n”,data);

//keep yourself registered

return 0;

}

};

int main(int argc, char* argv[]){

ACE_INET_Addr addr(10101);

ACE_DEBUG((LM_DEBUG,”Thread: (%t) main”));

//Prepare to accept connections

Acceptor myacceptor(addr,Reactor::instance());

// wait for something to happen.

while(1)

Reactor::instance()->handle_events();

return 0;

}

This example illustrates the use of the putq() and getq() methods to enqueue and dequeue 
message blocks onto the queue. It also illustrates how to create a message block and then 
how to set its write pointer and read from its read pointer. Note that the actual data inside 
the message block starts at the read pointer of the message block. The length() member 
function  of the message block returns the length of the underlying data stored in the 
message block and does not include the parts of ACE_Message_Block which are used for 
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book keeping purposes. In addition, we also show how to release the message block 
(mb) using the release() method.  
To read more about how to use message blocks, data blocks or the message queue, please 
read the sections in this manual on message queues and the ASX framework. Also, see 
the relevant sections in the reference manual. 

H O W T H E A C C E P T O R A N D C O N N E C T O R PAT T E R N S W O R K  

Both the acceptor and connector factories, i.e. ACE_Connector and ACE_Acceptor, have 
a very similar operational structure. Their workings can be roughly divided into three 
stages.  

!" Endpoint or connection initialization phase 
!" Service Initialization phase 
!" Service Processing phase 

E ndpoin t or c onn e c tion init i a liz a tion ph a s e 

In the case of the acceptor, the application-level programmer may either call the open() 
method of the factory, ACE_Acceptor, or its default constructor (which in fact WILL call 
the open() method) to start to passively listen to connections. When the open() method is 
called on the acceptor factory, it first instantiates the Reactor singleton if it has not 
already been instantiated. It then proceeds to call the underlying concrete acceptors 
open() method. The concrete acceptor will then go through the necessary initialization it 
needs to perform to listen for incoming connections. For example, in the case of 
ACE_SOCK_Acceptor, it will open a socket and bind the socket to the port and address 
on which the user wishes to listen for new connections. After binding the port, it will 
proceed to issue the listen call. The open method then registers the acceptor factory with 
the Reactor. Thus when any incoming connection requests are received, the reactor will 
automatically call back the Acceptor factories handle_input() method. Notice that the 
Acceptor factory itself derives from the ACE_Event_Handler hierarchy for this very 
reason, so that it can respond to ACCEPT events and can be called back from the Reactor. 
In the case of the connector, the application programmer will call the connect() method or 
the connect_n() method on the connector factory to initiate a connection to the peer. Both 
these methods take, among other options, the remote address to which we wish to connect 
and whether we want to synchronously or asynchronously complete the connection. We 
would initiate NUMBER_CONN connections either synchronously or asynchronously as: 
//Synchronous

OurConnector.connect_n(NUMBER_CONN,ArrayofMySvcHandlers,Remote_Addr,0,

ACE_Synch_Options::synch);

//Asynchronous

OurConnector.connect_n(NUMBER_CONN,ArrayofMySvcHandlers,Remote_Addr,0,

ACE_Synch_Options::asynch);

If the connect call is issued to be asynchronous, then the ACE_Connector will register 
itself with the reactor awaiting the connection to be established (again ACE_Connector 
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also is from the ACE_Event_Handler hierarchy). Once the connection is established, the 
reactor will then automatically call back the connector. In the synchronous case, 
however, the connect() call will block until either the connection is established or a 
timeout value expires. The time out value can be specified by changing certain 
ACE_Synch_Options. For details please see the reference manual.  

S er vic e Init i a liz a tion Ph a s e for th e  A c c e ptor 

When an incoming request comes in on the specified address and port, the reactor 
automatically calls back the ACE_Acceptor factory's handle_input() method.  
This method is a “Template Method”. A template method is used to define the order of 
the steps of an algorithm, but allow variation in how certain steps are performed. This 
variation is achieved by allowing subclasses to define the implementation of these 
methods. (For more on the Template Method see the reference on Design Patterns). 
In this case the Template method defines the algorithm as  

!" make_svc_handler(): Creates the Service Handler. 
!" accept_svc_handler(): Accept the connection into the created Service Handler 

from the previous step. 
!" activate_svc_handler(): Start the new service handler  up. 

Each of these methods can be rewritten to provide flexibility in how these operations are 
actually performed.  
Thus the handle_input() will first call the make_svc_handler() method, which creates the 
service handler of the appropriate type (the type of the service handler is passed in by the 
application programmer when the ACE_Acceptor template is instantiated, as we saw in 
the examples above). In the default case, the make_svc_handler() method just instantiates 
the correct service handler. However, the make_svc_handler() is a “bridge” method that 
can be overloaded to provide more complex functionality. (A bridge is a design pattern 
which decouples the interface of a hierarchy of classes from the implementation 
hierarchy - read more about this in the reference on “Design Patterns”). For example, the 
service handle can be created so that it is a process-wide or thread-specific singleton, or it 
can be dynamically linked in from a library, loaded from disk or even created by doing 
something as complicated as finding and obtaining the service handler in  a database and 
then bringing it into memory. 
After the service handler has been created, the handle_input() method proceeds to call 
accept_svc_handler(). This method “accepts” the connection “into” the service handler. 
The default case is to call the underlying concrete acceptor's accept() method. In the case 
that ACE_SOCK_Acceptor is being used as the concrete acceptor, it proceeds to call the 
BSD accept() routine which establishes the connection (“accepts” the connection). After 
the connection is established, the handle to the connection is automatically set inside the 
service handler which was previously created by calling make_svc_handler() (accepts 
“into” the service handler). This method can also be overloaded to provide more 
complicated functionality. For example, instead of actually creating a new connection, an 
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older connection could be “recycled”. This will be discussed in more detail when we 
show various different accepting and connecting strategies.  

S er vic e Init i a liz a tion Ph a s e for th e  C onn e c tor 

The connect() method, which is issued by the application, is similar to the handle_input() 
method in the Acceptor factory, i.e. it is a “Template Method”.  
In this case, the Template method connect() defines the following steps, which can be 
redefined. 

!" make_svc_handler(): Creates the Service Handler. 
!" connect_svc_handler(): Accept the connection into the created Service Handler 

from the previous step. 
!" activate_svc_handler(): Start the new service handler  up. 

Each of these methods can be rewritten to provide flexibility in how these operations are 
actually performed.  
Thus after the connect() call is issued by the application, the connector factory proceeds 
to instantiate the correct service handler by calling the make_svc_handler() call, exactly 
as it does in the case of the acceptor. The default behavior is to just instantiate the 
appropriate class. This can be overloaded exactly in the same manner as was discussed 
for the Acceptor. The reasons for doing such an overload would probably very similar to 
the ones mentioned above.  
After the service handler has been created, the connect() call determines if the connect is 
to be asynchronous or synchronous. If it is asynchronous, it registers itself with the 
reactor before continuing on to the next step. It then proceeds to call the 
connect_svc_handler() method. This method, by default, calls the underlying concrete 
connector's connect() method. In the case of ACE_SOCK_Connector this would mean 
issuing the BSD connect() call with the correct options for blocking or non-blocking I/O.  
If the connection was specified to be synchronous, this call will block until the 
connection has been established. In this case, when the connection has been established, 
it will proceed to set the handle in the service handler so that it can communicate with the 
peer it is now connected to (this is the handle stored in the stream which is obtained by 
calling the peer() method inside the service handler, see examples above). After setting 
the handle in the service handler, the connector pattern would then continue to the final 
stage of service processing. 
However, if the connection is specified to be asynchronous, the call to 
connect_svc_handler() will return immediately after issuing a non-blocking connect() 
call to the underlying concrete connector. In the case of ACE_SOCK_Connector, this 
would mean a non-blocking BSD connect() call. When the connection is in fact 
established at a later time, the reactor will call back the ACE_Connector factory's 
handle_output() method, which would set the new handle in the service handler that was 
created with the make_svc_handler() method. The factory would then continue to the 
next stage of service processing.  
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As was in the case of the accept_svc_handler(), connect_svc_handler() is a “bridge” 
method that can be overloaded to provide varying functionality.  

S er vic e Pro c e ssing 

Once the service handler has been created, the connection has been established, and the 
handle has been set in the service handler, the handle_input() method of ACE_Acceptor 
(or handle_output() or connect_svc_handler() in the case of ACE_Connector) will call 
the activate_svc_handler() method. This method will then proceed to activate the service 
handler, i.e. to will start it running. The default method is just to call the open() method 
as the entry point into the service handler. As we saw in the examples above, the open() 
method was indeed the first method which was called when the service handler started 
running. It was here that we called the activate() method to create multiple threads of 
control and also registered the service handler with the reactor so that it was 
automatically called back when new data arrived on the connection. This method is also a 
“bridge” method and can be overloaded to provide more complicated functionality. In 
particular, this overloaded method may provide for a more complicated concurrency 
strategy, such as running the service handler in a different process.  

T U N I N G T H E  A C C E P T O R A N D C O N N E C T O R P O LI C I E S 

As mentioned above, the acceptor and connector can be easily tuned because of the 
bridge methods which can be overloaded. The bridge methods allow tuning of: 

!" Creation Strategy for  the Service Handler: By overloading the 
make_svc_handler() method in either the acceptor or connector. For example, this 
could mean re-using an existing service handler or using some complicated 
method to obtain the service handler, as was discussed above. 

!" Connection Strategy: The connection creation strategy can be changed by 
overloading the connect_svc_handler() or accept_svc_handler() methods.  

!" Concurrency Strategy for the Service Handler: The concurrency strategy for 
the service handler can be changed by overloading the activate_svc_handler() 
method. For example, the service handler can be created in a different process. 

As noted above, the tuning is done by overloading bridge methods in the ACE_Acceptor 
or ACE_Connector classes. ACE has been designed so that such overloading and tuning 
can be done very easily. 

T h e A C E_Str a t e gy_C onn e c tor a nd A C E_Str a t e g y_A c c e ptor 
cl a ss e s 

To facilitate the tuning of the acceptor and connector patterns along the lines mentioned 
above, ACE provides two special “tunable” acceptor and connector factories that are very 
similar to ACE_Acceptor and ACE_Connector. These are ACE_Strategy_Acceptor and 
ACE_Strategy_Connector. These classes make use of the “Strategy” Pattern. 
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The strategy pattern is used to decouple algorithmic behavior from the interface of a 
class. The basic idea is to allow the underlying algorithms of a class (call it the Context 
Class) to vary independently from the clients that use the class. This is done with the help 
of concrete strategy classes. Concrete strategy classes encapsulate an algorithm or 
method to perform an operation. These concrete strategy classes are then used by the 
context class to perform operations (The context class delegates the “work” to the 
concrete strategy class). Since the context class doesn’t perform any of the operations 
directly, it does not have to be modified when functionality is to be changed. The only 
modification to the context class is that a different concrete strategy class will be used to 
perform the now changed operation. (To read more about the Strategy Pattern read the 
appendix on Design Patterns). 
In the case of ACE, the ACE_Strategy_Connector and the ACE_Strategy_Acceptor are 
Strategy Pattern classes which use several concrete strategy classes to vary the algorithms 
for  creating service handlers, establishing connections and for setting the concurrency 
method for service handlers. As you may have guessed, the ACE_Strategy_Connector 
and ACE_Strategy_Acceptor exploit the tunability provided by the bridge methods which 
were mentioned above.  
 
Using the Strategy Acceptor and Connector 

Several concrete strategy classes are already available in ACE that can be used to “tune” 
the Strategy Acceptor and Connector. They are passed in as parameters to either Strategy 
Acceptor or Connector when the class is instantiated. The following table shows some of 
the classes that can be used to tune the Strategy Acceptor and Connector classes. 
 

  
To modify the Concrete Strategy Class Description 

ACE_NOOP_Creation_
Strategy

This concrete strategy does NOT instantiate the 
service handler and is just a no-op.  

ACE_Singleton_
Strategy

Ensures that the service handler that is created is 
a singleton. That is, all connections will effectively 
use the same service handling routine. 

Creation Strategy 
(overrides make_svc_handler()) 

ACE_DLL_Strategy Creates a service handler by dynamically linking it 
from a dynamic link library.  

Connection Strategy 
(overrides  
connect_svc_handler()) 

ACE_Cached_Connect_
Strategy

Checks to see if there is already a service handler 
connected to  a particular remote address which 
isn’t being used. If there is such a service handler, 
then it will re-use that old service handler. 

ACE_NOOP_Concurrency_
Strategy

A do-nothing concurrency strategy. Will NOT 
even call the open() method of the service 
handler. 

ACE_Process_Strategy Create the service handler in a different process 
and call its open() hook. 

Concurrency Strategy 
(overrides 
activate_svc_handler()) 

ACE_Reactive_Strategy First register the service handler with the reactor 
and then call its open() hook. 
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 ACE_Thread_Strategy First call the service handlers open method and 
then call its activate() method so that another 
thread starts the svc() method of the service 
handler.  

Some examples will help illustrate the use of the strategy acceptor and connector classes. 
Example 8

#include ”ace/Reactor.h”

#include ”ace/Svc_Handler.h”

#include ”ace/Acceptor.h”

#include ”ace/Synch.h”

#include ”ace/SOCK_Acceptor.h”

#define PORT_NUM 10101

#define DATA_SIZE 12

//forward declaration

class My_Svc_Handler;

//instantiate a strategy acceptor

typedef ACE_Strategy_Acceptor<My_Svc_Handler,ACE_SOCK_ACCEPTOR> MyAcceptor;

//instantiate a concurrency strategy

typedef ACE_Process_Strategy<My_Svc_Handler> Concurrency_Strategy;

// Define the Service Handler

class My_Svc_Handler:

public ACE_Svc_Handler <ACE_SOCK_STREAM,ACE_NULL_SYNCH>{

private:

char* data;

public:

My_Svc_Handler(){

data= new char[DATA_SIZE];

}

My_Svc_Handler(ACE_Thread_Manager* tm){

data= new char[DATA_SIZE];

}

int open(void*){

cout<<”Connection established”<<endl;

//Register with the reactor

ACE_Reactor::instance()->register_handler(this,

ACE_Event_Handler::READ_MASK);

return 0;

}

int handle_input(ACE_HANDLE){

peer().recv_n(data,DATA_SIZE);

ACE_OS::printf(”<< %s\n”,data);

// keep yourself registered with the reactor

return 0;

}

};

int main(int argc, char* argv[]){

ACE_INET_Addr addr(PORT_NUM);

//Concurrency Strategy
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Concurrency_Strategy my_con_strat;

//Instantiate the acceptor

MyAcceptor acceptor(addr, //address to accept on

ACE_Reactor::instance(), //the reactor to use
0, // don’t care about creation strategy

0, // don’t care about connection estb. strategy

&my_con_strat); // use our new process concurrency strategy

while(1) /* Start the reactor’s event loop */

ACE_Reactor::instance()->handle_events();

}

This example is based on example 2 above. The only difference is that it uses the 
ACE_Strategy_Acceptor instead of using the ACE_Acceptor, and uses the 
ACE_Process_Strategy as the concurrency strategy for the service handler. This 
concurrency strategy ensures that the service handler is instantiated in a separate process 
once the connection has been established. If the load on a certain service is going to be 
extremely high, it may be a good idea to use the ACE_Process_Strategy. In most cases, 
however, using the ACE_Process_Strategy would be too expensive, and 
ACE_Thread_Strategy would probably be the better concurrency strategy to use.  
 
Using the ACE_Cached_Connect_Strategy for Connection caching 

In many applications, clients connect and then reconnect to the same server several times, 
each time establishing the connection, performing some work and then tearing down the 
connection (such as is done in Web clients). Needless to say, this is very inefficient and 
expensive as connection establishment and teardown are expensive operations. A better 
strategy in such a case would be for the connector to “remember” old connections and not 
tear them down until it is sufficiently sure that the client will not try to re-establish a 
connection again. The ACE_Cached_Connect_Strategy provides just such a caching 
strategy. This strategy object is used by the ACE_Strategy_Connector to provide for 
cache-based connection establishment. If a connection already exists, the 
ACE_Strategy_Connector will reuse it instead of creating a new connection. 
When the client tries to re-establish a connection to a server that it had previously formed 
a connection with, the ACE_Cached_Connect_Strategy ensures that the old connection 
and the old service handler are reused instead of creating a new connection and new 
service handler. Thus, in truth, the ACE_Cached_Connect_Strategy not only manages the 
connection establishment strategy, it also manages the service handler creation strategy. 
Since in this case, the user does NOT want to create new service handlers, we pass the 
ACE_Strategy_Connector an ACE_Null_Creation_Strategy. If the connection has never 
been established before, then ACE_Cached_Connect_Strategy will automatically 
instantiate the correct service handler that was passed to it when this template class is 
instantiated using an internal creation strategy. This strategy can be set to any strategy the 
user wishes to use. Besides this, the ACE_Cached_Connect_Strategy itself can be passed 
the creation, concurrency and recycling strategies it uses in its constructor. The following 
example illustrates these ideas. 
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Example 9

#include ”ace/Reactor.h”

#include ”ace/Svc_Handler.h”

#include ”ace/Connector.h”

#include ”ace/Synch.h”

#include ”ace/SOCK_Connector.h”

#include ”ace/INET_Addr.h”

#define PORT_NUM 10101

#define DATA_SIZE 16

//forward declaration

class My_Svc_Handler;

//Function prototype

static void make_connections(void *arg);

// Template specializations for the hashing function for the

// hash_map which is used by the cache. The cache is used internally by the

// Cached Connection Strategy . Here we use ACE_Hash_Addr

// as our external identifier. This utility class has already

// overloaded the == operator and the hash() method. (The

// hashing function). The hash() method delegates the work to

// hash_i() and we use the IP address and port to get a

// a unique integer hash value.

size_t

ACE_Hash_Addr<ACE_INET_Addr>::hash_i (const ACE_INET_Addr &addr) const

{

return addr.get_ip_address () + addr.get_port_number ();

}

//instantiate a strategy acceptor

typedef ACE_Strategy_Connector<My_Svc_Handler,ACE_SOCK_CONNECTOR>

STRATEGY_CONNECTOR;

//Instantiate the Creation Strategy

typedef ACE_NOOP_Creation_Strategy<My_Svc_Handler>

NULL_CREATION_STRATEGY;

//Instantiate the Concurrency Strategy

typedef ACE_NOOP_Concurrency_Strategy<My_Svc_Handler>

NULL_CONCURRENCY_STRATEGY;

//Instantiate the Connection Strategy

typedef ACE_Cached_Connect_Strategy<My_Svc_Handler,

ACE_SOCK_CONNECTOR,

ACE_SYNCH_RW_MUTEX>

CACHED_CONNECT_STRATEGY;

class My_Svc_Handler:

public ACE_Svc_Handler <ACE_SOCK_STREAM,ACE_MT_SYNCH>{

private:

char* data;

public:

My_Svc_Handler(){
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data= new char[DATA_SIZE];

}

My_Svc_Handler(ACE_Thread_Manager* tm){

data= new char[DATA_SIZE];

}

//Called before the service handler is recycled..

int

recycle (void *a=0){

ACE_DEBUG ((LM_DEBUG,

”(%P|%t) recycling Svc_Handler %d with handle %d\n”,

this, this->peer ().get_handle ()));

return 0;

}

int open(void*){

ACE_DEBUG((LM_DEBUG,”(%t)Connection established \n”));

//Register the service handler with the reactor

ACE_Reactor::instance()

->register_handler(this,ACE_Event_Handler::READ_MASK);

activate(THR_NEW_LWP|THR_DETACHED);

return 0;

}

int handle_input(ACE_HANDLE){

ACE_DEBUG((LM_DEBUG,”Got input in thread: (%t) \n”));

peer().recv_n(data,DATA_SIZE);

ACE_DEBUG((LM_DEBUG,”<< %s\n”,data));

//keep yourself registered with the reactor

return 0;

}

int svc(void){

//send a few messages and then mark connection as idle so that it can // be recycled

later.

ACE_DEBUG((LM_DEBUG,”Started the service routine \n”));

for(int i=0;i<3;i++){

ACE_DEBUG((LM_DEBUG,”(%t)>>Hello World\n”));

ACE_OS::fflush(stdout);

peer().send_n(”Hello World”,sizeof(”Hello World”));

}

//Mark the service handler as being idle now and let the

//other threads reuse this connection

this->idle(1);

//Wait for the thread to die

this->thr_mgr()->wait();

return 0;
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}

};

ACE_INET_Addr *addr;

int main(int argc, char* argv[]){

addr= new ACE_INET_Addr(PORT_NUM,argv[1]);

//Creation Strategy

NULL_CREATION_STRATEGY creation_strategy;

//Concurrency Strategy

NULL_CONCURRENCY_STRATEGY concurrency_strategy;

//Connection Strategy

CACHED_CONNECT_STRATEGY caching_connect_strategy;

//instantiate the connector

STRATEGY_CONNECTOR connector(

ACE_Reactor::instance(), //the reactor to use

&creation_strategy,

&caching_connect_strategy,

&concurrency_strategy);

//Use the thread manager to spawn a single thread

//to connect multiple times passing it the address

//of the strategy connector

if(ACE_Thread_Manager::instance()->spawn(

(ACE_THR_FUNC) make_connections,

(void *) &connector,

THR_NEW_LWP) == -1)

ACE_ERROR ((LM_ERROR, ”(%P|%t) %p\n%a”, ”client thread spawn failed”));

while(1) /* Start the reactor’s event loop */

ACE_Reactor::instance()->handle_events();

}

//Connection establishment function, tries to establish connections

//to the same server again and re-uses the connections from the cache

void make_connections(void *arg){

ACE_DEBUG((LM_DEBUG,”(%t)Prepared to connect \n”));

STRATEGY_CONNECTOR *connector= (STRATEGY_CONNECTOR*) arg;

for (int i = 0; i < 10; i++){

My_Svc_Handler *svc_handler = 0;

// Perform a blocking connect to the server using the Strategy

// Connector with a connection caching strategy. Since we are

// connecting to the same <server_addr> these calls will return the

// same dynamically allocated <Svc_Handler> for each <connect> call.

if (connector->connect (svc_handler, *addr) == -1){

ACE_ERROR ((LM_ERROR, ”(%P|%t) %p\n”, ”connection failed\n”));

return;

}

// Rest for a few seconds so that the connection has been freed up

ACE_OS::sleep (5);
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}

}

 
In the above example, the Cached Connection Strategy is used to cache connections. To 
use this strategy, a little extra effort is required to define the hash() method on the hash 
map manager that is used internally by  ACE_Cached_Connect_Strategy. The hash() 
method is the hashing function, which is used to hash into the cache map of service 
handlers and connections that is used internally by the ACE_Cached_Connect_Strategy.  
It simply uses the sum of the IP address and port number as the hashing function, which 
is probably not a very good hash function.  
The example is also a little more complicated then the ones that have been shown so far 
and thus warrants a little extra discussion.   
We use a no-op concurrency and creation strategy with the ACE_Strategy_Acceptor. 
Using  a no-op creation strategy IS necessary, as was explained above, if this is not set to 
a ACE_NOOP_Creation_Strategy, the ACE_Cached_Connection_Strategy will cause an 
assertion failure.  When using the ACE_Cached_Connect_Strategy, however, any 
concurrency strategy can be used with the strategy acceptor. As was mentioned above, 
the underlying creation strategy used by the ACE_Cached_Connect_Strategy can be set 
by the user. The recycling strategy can also be set. This is done when instantiating the 
caching_connect_strategy by passing its constructor the strategy objects for the 
required creation and recycling strategies. Here, we have not done so, and are using both 
the default creation and recycling strategy.  
After the connector has been set up appropriately, we use the Thread_Manager to spawn 
a new thread with the  make_connections() method as its entry point. This method uses 
our new strategy connector to connect to a remote site. After the connection is 
established, this thread goes to sleep for five seconds and then tries to re-create the same 
connection using our cached connector. This thread should then, in its next attempt, find 
the connection in the connectors cache and reuse it.  
Our service handler (My_Svc_Handler) is called back by the reactor, as usual, once the 
connection has been established. The open() method of My_Svc_Handler then makes 
itself into an active object by calling its activate() method. The svc() method then 
proceeds to send three messages to the remote host and then marks the connection idle by 
calling the idle() method of the service handler. Note the call to the thread manager, 
asking it to wait (this->thr_mgr-wait()) for all threads in the thread manager to 
terminate. If you do not ask the thread manager to wait for the other threads, then the 
semantics have been set  up in ACE such that once the thread in an ACE_Task (or in this 
case the ACE_Svc_Handler which is a type of ACE_Task) is terminated, the ACE_Task 
object (or in this case the ACE_My_Svc_Handler) will automatically be deleted. If this 
happens, then, when the Cache_Connect_Strategy goes looking for previously cached 
connections, it will NOT find My_Svc_Handler as we expect it too, as, of course, this 
has been deleted.  
The recycle() method in ACE_Svc_Handler has also been overloaded in 
My_Svc_Handler. This method is automatically called back when an old connection is 
found by the ACE_Cache_Connect_Strategy, so that the service handler may do recycle 
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specific operations in this method. In our case, we just print out the address of the this
pointer of the handler which was found in the cache. When the program is run, we notice 
that the address of the handle being used after each connection is established is the same, 
indicating that the caching is working correctly.  

U sin g S im pl e  E ve n t H a n dl e r s w i t h t h e  A c c e p t or a n d 
C o n n e c t or p a t t e r n s 

At times, using the heavy weight ACE_Svc_Handler as the handler for acceptors and 
connectors may be unwarranted and cause code bloat. In these cases, the user may use the 
lighter ACE_Event_Handler method as the class which is called back by the reactor once 
the connection has been established. To do so, one needs to overload the get_handle() 
method and also include a concrete underlying stream which will be used by the event 
handler. An example should help illustrate these changes. Here we have also written a 
new peer() method which returns a reference to the underlying stream, as it did in the 
ACE_Svc_Handler class. 
Example 10

#include ”ace/Reactor.h”

#include ”ace/Svc_Handler.h”

#include ”ace/Acceptor.h”

#include ”ace/Synch.h”

#include ”ace/SOCK_Acceptor.h”

#define PORT_NUM 10101

#define DATA_SIZE 12

//forward declaration

class My_Event_Handler;

//Create the Acceptor class

typedef ACE_Acceptor<My_Event_Handler,ACE_SOCK_ACCEPTOR>

MyAcceptor;

//Create an event handler similar to as seen in example 2. We have to //overload the

get_handle() method and write the peer() method. We also //provide the data member peer_

as the underlying stream which is //used.

class My_Event_Handler:

public ACE_Event_Handler{

private:

char* data;

//Add a new attribute for the underlying stream which will be used by //the Event Handler

ACE_SOCK_Stream peer_;

public:

My_Event_Handler(){

data= new char[DATA_SIZE];

}

int

open(void*){

cout<<”Connection established”<<endl;
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//Register the event handler with the reactor

ACE_Reactor::instance()->register_handler(this,

ACE_Event_Handler::READ_MASK);

return 0;

}

int

handle_input(ACE_HANDLE){

// After using the peer() method of our ACE_Event_Handler to obtain a

//reference to the underlying stream of the service handler class we

//call recv_n() on it to read the data which has been received. This

//data is stored in the data array and then printed out

peer().recv_n(data,DATA_SIZE);

ACE_OS::printf(”<< %s\n”,data);

// keep yourself registered with the reactor

return 0;

}

// new method which returns the handle to the reactor when it

//asks for it.

ACE_HANDLE

get_handle(void) const{

return this->peer_.get_handle();

}

//new method which returns a reference to the peer stream

ACE_SOCK_Stream &

peer(void) const{

return (ACE_SOCK_Stream &) this->peer_;

}

};

int main(int argc, char* argv[]){

ACE_INET_Addr addr(PORT_NUM);

//create the acceptor

MyAcceptor acceptor(addr, //address to accept on

ACE_Reactor::instance()); //the reactor to use

while(1) /* Start the reactor’s event loop */

ACE_Reactor::instance()->handle_events();
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T he Ser vic e Configurator 
A pattern for Dynamic Configuration of Services 
Many distributed systems contain a collection of global services. These services can be 
called upon by an application developer to assist in him in his distributed development 
needs. Global services, such as name services, remote terminal access services, logging 
and time services are needed when constructing distrbuted applications. One way to 
construct these services is to write each service as  a separate program. These service 
programs are then executed and run in their own private processes.  However, this leads 
to configuration nightmares. An administrator would have to go to each node and execute 
the service programs in accordance with current user needs and policies. If new services 
have to be added or older ones removed, then the administrator has to spend the time to 
go to each machine again and re-configure. Further, such configuration is static. To re-
configure, the adminstrator manually stops a service (by kill() ing the service process) and 
then restarts a replacement service. Also, services may be running on machines where 
they are never used by any application. Obviously, such an approach is inefficient and 
undesirable. 
It would be much more convenient if the services could be dynamically started, removed, 
suspended and resumed. Thus, the service developer doesn’t have to worry about how the 
service will be configured. All he cares about is how the service gets the job done. The 
adminstrator should be able to add and replace new services within the application 
without recompling or shutting down the services server process.  
The Service Configurator pattern is a pattern which allows all this. It decouples how a 
service is implented from how it is configured. New services can be added in an 
application and old services can be removed without shutting down the server. Most of 
the time the server which provides services is implemented as a daemon process.  
 

Fr a m e w or k  C o m p o n e n t s  

The Service Configurator in ACE consists of the following components: 
!" An abstract class named ACE_Service_Object from which the application 

developer must subclass to create his own application-specific concrete Service 
Object.  

Chapter 

8
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!" The application-specific concrete service objects. 
!" A Service Repository, ACE_Service_Repository, which records the services 

that the server has running in it or knows about. 
!" ACE_Service_Config which serves as an application developers interface to the 

entire service configuration framework.  
!" A service configuration file. This file contains configuration information for all of 

the service objects. By default it is named svc.conf. When your application 
issues an open() call on the ACE_Service_Config, the service configurator 
framework will read and process all configuration information that you write 
within the file. The application will be configured accordingly. 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The ACE_Service_Object includes methods which are called by the framework when the 
service is to start (init()), stop (fini()), suspend (suspend()) or is to be resumed 
(resume()). The ACE_Service_Object derieves from ACE_Shared_Object and 
ACE_Event_Handler. The ACE_Shared_Object serves as the abstract base class when an 
application wishes it to be loaded using the dynamic linking facilities of the operating system. 
ACE_Event_Handler was introduced in the discussion of the Reactor. A developer 
subclasses his class from here when he wants it to respond to events from the Reactor.  

ACE_Service_Repositor y 

initialize() 
insert() 
remove() 
suspend() 
resume() 

ACE_Service_Object  

init() 
fini() 
suspend() 
resume() 

ConcreteServiceObject2  

init() 
fini() 
suspend() 
resume() 

ConcreteServiceObject1  

init() 
fini() 
suspend() 
resume() ACE_Service_Config  

initialize() 
remove() 
suspend() 
resume() 
reconfigure() 
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Why does the Service Object inherit from ACE_Event_Handler? One way to initiate a 
reconfiguration is for the user to generate a signal. When such a signal event occurs, the 
reactor is used to handle the signal and issue a reconfiguration request to the 
ACE_Service_Config. Besides this, reconfiguration of the software will probably happen 
after an event has occurred. Thus all Service Objects are built so that they can handle events. 
 The service configuration file has its own simple script for describing how you want a 
service to be started and then run. You can define whether you want to add a new service 
or to suspend, resume or remove an existing service in the application. Parameters can 
also be sent to these services.  The Service Configurator also allows the reconfiguration 
of ACE based streams. We will talk about this more when we have discussed the ACE 
streams framework. 
 

S p e c ify in g t h e  c o nfig ur a t ion fi l e  

The service configuration file specifies which services to load and start in an application. 
In addition, you can specify which services are to be stopped, suspended or resumed. 
Parameters can also be sent to your service objects init() method.   
 
Starting a service 

Services can be started up statically or dynamically.  If the service is to be started up 
dynamically, the service configurator will actually load up the service object from a 
shared library object (i.e. a dynamic link library). In order to do this, the service 
configurator needs to know which library contains the object and also it needs to know 
the name of the object in that library. Thus, in your code file you must also instantiate the 
service object with a name that you will remember. Thus a dynamic service is configured 
as:  
dynamic service_name type_of_service * location_of_shared_lib:name_of_object ÒparametersÓ 

A static service is initialized as: 
static service_name Òparameters_sent_to_service_objectÓ 

 
Suspending or resuming a service 

When you start a service you assign it a name, as I just mentioned. This name is then 
used to suspend or resume that service. So all you have to do to suspend a service is to 
specify: 
suspend service_name 

in the svc.conf file. This causes the suspend() method in the service object to be called. 
Your service object should then suspend itself (based on whatever "suspend" means for 
that particular service). 
If you want to then resume this service all you have to do is specify: 
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resume service_name 

in the svc.conf file. This causes the resume() method in the service object to be called. 
Your service object should then suspend itself (based on whatever "resume" means for 
that particular service). 
Stopping a service 

Stopping and then removing a service (if it had been dynamically loaded) is also a simple 
operation that can be achieved by specifying the following in your configuration file: 
remove service_name 

This causes the service configurator to call the fini()method of your application. This 
method should stop the service. The service configurator itself will take care of unlinking 
a dynamic object from the servers address space.  
 

Writ ing S e r v i c e s 

Writing your own service for the Service Configurator is relatively simple. You are free 
to have this service do whatever you want. The only constraint is that it should be 
subclassed from ACE_Service_Object. It must therefore implement the init() and fini() 
methods. When ACE_Service_Config is open()’d it reads the configuration file (i.e. 
svc.conf) and then initializes the services according to the file. Once it loads up a service 
(by dynamically linking it in if specified), it will call that Service Objects init() method. 
Similarily, if the configuration asks for a service to be removed, the fini() method will be 
called. These methods are responsible for starting and destroying any resources that the 
service may need, such as memory, connections, threads, etc. The parameters that are 
specified (field that is set) in the svc.conf file are passed in through the init() method of 
the service object. 
The following example illustrates a service which derieves from ACE_Task_Base. The 
ACE_Task_Base class contains the activate() method that is used to create threads within 
an object. (ACE_Task, which was discussed in the chapter on tasks and active objects, 
derieves from ACE_Task_Base and also includes a message queue for communication 
purposes. Since we don’t need our service to communicate with another task we just use 
ACE_Task_Base to help us get the job done.) For more on this, read the chapter on Tasks 
and Active Objects. The service is a “do-nothing” service which periodically broadcasts 
the time of the day once it is started up. 
Example 1a

//The Services Header File.

#if !defined(MY_SERVICE_H)

#define MY_SERVICE_H

#include "ace/OS.h"

#include "ace/Task.h"

#include "ace/Synch_T.h"
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// A Time Service class. ACE_Task_Base already derives from //ACE_Service_Object and thus

we don’t have to subclass from //ACE_Service_Object in this case.

class TimeService: public ACE_Task_Base{

public:

virtual int init(int argc, ASYS_TCHAR *argv[]);

virtual int fini(void);

virtual int suspend(void);

virtual int resume(void);

virtual int svc(void);

private:

int canceled_;

ACE_Condition<ACE_Thread_Mutex> *cancel_cond_;

ACE_Thread_Mutex *mutex_;

};

#endif

 
The corresponding implementation is as follows. When the time service receives the 
init() call it activate()’s a single thread in the task. This will cause a new thread to be 
created which treats the svc() method as its entry point. In the svc() method, this thread 
will loop until it finds that the canceled_ flag has been set. This flag is set when fini() is 
called by the service configuration framework. The fini() method, however, has to be 
sure that the underlying thread is dead BEFORE it returns to the underlying service 
configuration framework. Why? Because the service configuration will actually unload 
the shared library which contains the TimeService. This will effectively delete the 
TimeService object from the application process. If the thread isn’t dead before that 
happens, it will be issuing a call on code that has been vaporized by the service 
configurator! Not what we want. To ensure that the thread dies before the service 
configurator vaporizes the TimeService object, a condition variable is used.  (For more 
on how condition variables are used, please read the chapter on threads). 
 
Example 1b

#include "Services.h"

int TimeService::init(int argc, char *argv[]){

ACE_DEBUG((LM_DEBUG,"(%t)Starting up the time Service\n"));

mutex_ = new ACE_Thread_Mutex;

cancel_cond_ = new ACE_Condition<ACE_Thread_Mutex>(*mutex_);

activate(THR_NEW_LWP|THR_DETACHED);

return 0;

}

int TimeService::fini(void){

ACE_DEBUG((LM_DEBUG,

"(%t)FINISH!Closing down the Time Service\n"));

//All of the following code is here to make sure that the

//thread in the task is destroyed before the service configurator

//deletes this object.
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canceled_=1;

mutex_->acquire();

while(canceled_)

cancel_cond_->wait();

mutex_->release();

ACE_DEBUG((LM_DEBUG,"(%t)Time Service is exiting \n"));

return 0;

}

//Suspend the Time Service.

int TimeService::suspend(void){

ACE_DEBUG((LM_DEBUG,"(%t)Time Service has been suspended\n"));

int result=ACE_Task_Base::suspend();

return result;

}

//Resume the Time Service.

int TimeService::resume(void){

ACE_DEBUG((LM_DEBUG,"(%t)Resuming Time Service\n"));

int result=ACE_Task_Base::resume();

return result;

}

//The entry function for the thread. The tasks underlying thread

//starts here and keeps sending out messages. It stops when:

// a) it is suspeneded

// b) it is removed by fini(). This happens when the fini() method

// sets the cancelled_ flag to true. Thus causes the TimeService

// thread to fall through the while loop and die. Before dying it

// informs the main thread of its imminent death. The main task

// that was previously blocked in fini() can then continue into the

// framework and destroy the TimeService object.

int TimeService::svc(void){

char *time = new char[36];

while(!canceled_){

ACE::timestamp(time,36);

ACE_DEBUG((LM_DEBUG,"(%t)Current time is %s\n",time));

ACE_OS::fflush(stdout);

ACE_OS::sleep(1);

}

//Signal the Service Configurator informing it that the task is now

//exiting so it can delete it.

canceled_=0;

cancel_cond_->signal();

ACE_DEBUG((LM_DEBUG,

"Signalled main task that Time Service is exiting \n"));

return 0;

}

//Define the object here
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TimeService time_service;

 
And here is a simple configuration file that is currently set just to activate the time 
service. The comment # marks can be removed to suspend, resume or remove the service. 
Example 1c

# To configure different services, simply uncomment the appropriate

#lines in this file!

#resume TimeService

#suspend TimeService

#remove TimeService

#set to dynamically configure the TimeService object and do so without

#sending any parameters to its init method

dynamic TimeService Service_Object * ./Server:time_service ""

 
And, last but not least, here is the piece of code that starts the service configurator. This 
code also sets up a signal handler object that is used to initiate the re-configuration. The 
signal handler has been set up so that it responds to a SIGWINCH (signal that is generated 
when a window is changed). After starting the service configurator, the application enters 
into a reactive loop waiting for a SIGWINCH signal event to occur. This would then call 
back the signal handler which would call reconfigure() on ACE_Service_Config. As 
explained earlier, when this happens, the service configurator re-reads the file and 
processes whatever new directives the user has put in there. For example, after issuing the 
dynamic start for the TimeService, in this example you could change the svc.conf file so 
that it has the single suspend statement in it. When the configurator reads this, it will call 
suspend on the TimeService which will cause it to suspend its underlying thread. 
Similarily, if later you change svc.conf again so that it asks for the service to be resumed 
then this will call the  TimeService::resume() method. This in turn resumes the thread 
that had been suspended earlier. 
Example 1d

#include "ace/OS.h"

#include "ace/Service_Config.h"

#include "ace/Event_Handler.h"

#include <signal.h>

//The Signal Handler which is used to issue the reconfigure()

//call on the service configurator.

class Signal_Handler: public ACE_Event_Handler{

public:

int open(){

//register the Signal Handler with the Reactor to handle

//re-configuration signals

ACE_Reactor::instance()->register_handler(SIGWINCH,this);

return 0;

}

int handle_signal(int signum, siginfo*,ucontext_t *){

if(signum==SIGWINCH)

ACE_Service_Config::reconfigure();

return 0;
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}

};

int main(int argc, char *argv[]){

//Instantiate and start up the Signal Handler. This is uses to

//handle re-configuration events.

Signal_Handler sh;

sh.open();

if (ACE_Service_Config::open (argc, argv) == -1)

ACE_ERROR_RETURN ((LM_ERROR,

"%p\n","ACE_Service_Config::open"),-1);

while(1)

ACE_Reactor::instance()->handle_events();

}

 

U sin g t h e  S e r vi c e  M a n a g e r  

The ACE_Service_Manager is a service that is can be used to remotely manage the 
service configurator. It can currently receive two types of requests. First, you can send it 
a “help” message which will list all the services that are currently loaded into the 
application. Second, you can send the service manager a “reconfigure” message. This 
causes the service configurator to reconfigure itself.  
Following is an example which illustrates a client that sends these two types of 
commands to the service manager.  
Example 2

#include "ace/OS.h"

#include "ace/SOCK_Stream.h"

#include "ace/SOCK_Connector.h"

#include "ace/Event_Handler.h"

#include "ace/Get_Opt.h"

#include "ace/Reactor.h"

#include "ace/Thread_Manager.h"

#define BUFSIZE 128

class Client: public ACE_Event_Handler{

public:

~Client(){

ACE_DEBUG((LM_DEBUG,"Destructor \n"));

}

//Constructor

Client(int argc, char *argv[]): connector_(), stream_(){

//The user must specify address and port number

ACE_Get_Opt get_opt(argc,argv,"a:p:");

for(int c;(c=get_opt())!=-1;){

switch(c){

case 'a':
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addr_=get_opt.optarg;

break;

case 'p':

port_= ((u_short)ACE_OS::atoi(get_opt.optarg));

break;

default:

break;

}

}

address_.set(port_,addr_);

}

//Connect to the remote machine

int connect(){

connector_.connect(stream_,address_);

ACE_Reactor::instance()->

register_handler(this,ACE_Event_Handler::READ_MASK);

return 0;

}

//Send a list_services command

int list_services(){

stream_.send_n("help",5);

return 0;

}

//Send the reconfiguration command

int reconfigure(){

stream_.send_n("reconfigure",12);

return 0;

}

//Handle both standard input and remote data from the

//ACE_Service_Manager

int handle_input(ACE_HANDLE h){

char buf[BUFSIZE];

//Got command from the user

if(h== ACE_STDIN){

int result = ACE_OS::read (h, buf, BUFSIZ);

if (result == -1)

ACE_ERROR((LM_ERROR,"can't read from STDIN"));

else if (result > 0){

//Connect to the Service Manager

this->connect();

if(ACE_OS::strncmp(buf,"list",4)==0)

this->list_services();

else if(ACE_OS::strncmp(buf,"reconfigure",11)==0)

this->reconfigure();

}
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return 0;
}

//We got input from remote

else{

switch(stream_.recv(buf,BUFSIZE)){

case -1:

//ACE_ERROR((LM_ERROR,

"Error in receiving from remote\n"));

ACE_Reactor::instance()->remove_handler(this,

ACE_Event_Handler::READ_MASK);

return 0;

case 0:

return 0;

default:

ACE_OS::printf("%s",buf);

return 0;

}

}

}

//Used by the Reactor Framework

ACE_HANDLE get_handle() const{

return stream_.get_handle();

}

//Close down the underlying stream

int handle_close(ACE_HANDLE,ACE_Reactor_Mask){

return stream_.close();

}

private:

ACE_SOCK_Connector connector_;

ACE_SOCK_Stream stream_;

ACE_INET_Addr address_;

char *addr_;

u_short port_;

};

int main(int argc, char *argv[]){

Client client(argc,argv);

//Register the the client event handler as the standard

//input handler

ACE::register_stdin_handler(&client,
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ACE_Reactor::instance(),
ACE_Thread_Manager::instance());

ACE_Reactor::run_event_loop();

}

In this example, the Client class is an event handler which handles two types of events. 
Standard input events from the user and replies from the ACE_Service_Manager. If the 
user types in a “list” or “reconfigure” command, then the corresponding messages are 
sent to the remote ACE_Service_Manager. The Service Manager in turn will reply with a 
list of the currently configured services or with “done” (indicating that the service re-
configuration is done). Since the ACE_Service_Manager is a service, it is added into an 
application using the service configurator framework, i.e. you specify whether you wish 
it to be loaded statically or dynamically in the svc.conf file. 
For example, this will statically start up the service manager at port 9876. 
static ACE_Service_Manager Ò-p 9876Ó 
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Messa ge Queues 
The use of Message Queues in ACE 

Modern real-time applications are usually constructed as a set of communicating but 
independent tasks. These tasks can communicate with each other through several 
mechanisms, one which is commonly used is a message queue. The basic mode of 
communication in this case is for a sender (or producer) task to enqueue a message onto a 
message queue and the receiver (or consumer) task to dequeue the message from that 
queue. This of course is just one of the ways message queues can be used. We will see 
several different examples of message queue usage in the ensuing discussion. 
The message queue in ACE has been modeled after UNIX System V message queues, 
and are easy to pick up if you are already familiar with System V. There are several 
different types of Message Queues available in ACE. Each of these different queues use a 
different scheduling algorithm for queueing and de-queing messages from the queue.  
 

M e s s a g e  B lo c k s 

Messages are enqueued onto message queues as message blocks in ACE. A message 
block wraps the actual message data that is being stored and offers several data insertion 
and  manipulation operations. Each message block “contains” a header and a data block. 
Note that “contains” is used in a loose sense here. The Message Block does not always 
manage the memory associated with the Data Block (although you can have it do this for 
you) or with the Message Header. It only holds a pointer to both of them. The 
containment is only logical. The data block in turn holds a pointer to an actual data 
buffer. This allows flexible sharing of data between multiple message blocks as 
illustrated in the figure below. Note that in the figure two message blocks share a single 
data block. This allows the queueing of the same data onto different queues without data 
copying overhead.  
The message block class is named ACE_Message_Block and the data block class is 
ACE_Data_Block. The constructors in ACE_Message_Block are a convient way to to 
actually create message blocks and data blocks 

Chapter 

9
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C onstru c ting M e ss a g e B lo c k s 

The ACE_Message_Block class contains several different constructors. You can use 
these constructors to help you to manage the message data that is hidden behind the 
message and data blocks. The ACE_Message_Block class can be used to completely hide 
the ACE_Data_Block and manage the message data for you or if you want you can create 
and manage data blocks and message data on your own. The next section goes over how 
you can use ACE_Message_Block to manage message memory and data blocks for you. 
We then go over how you can manage this on your own without relying on 
ACE_Message_Block’s management features. 
 
ACE_Message_Block allocates and manages the data memory. 

The easiest way to create a message block is to pass in the size of the underlying data 
segment to the constructor of the ACE_Message_Block. This causes the creation of an 
ACE_Data_Block and the allocation of an empty memory region for message data. After 
creating the message block you can use the rd_ptr() and wr_ptr() manipulation methods 
to insert and remove data from the message block. The chief advantage of letting the 
ACE_Message_Block create the memory for the data and the data block is that it will now 
correctly manage all of this memory for you. This can save you from many future 
memory leak headaches.  
The ACE_Message_Block constructor also  allows the programmer to specify the 
allocator that ACE_Message_Block should use whenever it allocates memory internally. 
If you pass in an allocator the message block will use it to allocate memory for the 
creation of the data block and message data regions. The constructor is: 
 
ACE_Message_Block (size_t size,

ACE_Message_Type type = MB_DATA,

ACE_Message_Block *cont = 0,

const char *data = 0,

ACE_Allocator *allocator_strategy = 0,

ACE Message Block1 ACE Data Block

ACE Message Block2

Actual  Data Buffer 
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ACE_Lock *locking_strategy = 0,

u_long priority = 0,

const ACE_Time_Value & execution_time = ACE_Time_Value::zero,

const ACE_Time_Value & deadline_time = ACE_Time_Value::max_time);

 
The above constructor is called with the parameters: 
 1. The size of the data buffer that is to be associated with the message block. Note 

that the size of the message block will be size, but the length will be 0 until the 
wr_ptr is set. This will be explained further later. 

 2. The type of the message. (There are several types available in the 
ACE_Message_Type enumeration including data messages, which is the default). 

 3. A pointer to the next message block in the “fragment chain”. Message blocks can 
actually be linked together to form chains. Each of these chains can then be 
enqueued onto a message queue as if it were only a single message block. This 
defaults to 0, meaning that chaining is not used for this block. 

 4. A pointer to the data buffer which is to be stored in this message block. If the 
value of this parameter is zero, then a buffer of the size specified in the first 
parameter is created and managed by the message block. When the message block 
is deleted, the corresponding data buffer is also deleted. However, if the data 
buffer is specified in this parameter, i.e. the argument is not null, then the message 
block will NOT delete the data buffer once it is destroyed. This is an important 
distinction and should be noted carefully.  

 5. The allocator_strategy to be used to allocate the data buffer (if needed), i.e. if 
the 4th parameter was null (as explained above). Any of the ACE_Allocator sub-
classes can be used as this argument. (See the chapter on Memory Management 
for more on ACE_Allocators). 

 6. If locking_strategy is non-zero, then this is used to protect regions of code that 
access shared state (e.g. reference counting) from race conditions. 

 7. This and the next two parameters are used for scheduling for the real-time 
message queues which are available with ACE, and should be left at their default 
for now. 

User allocates and manages message memory 

If you are using ACE_Message_Block you are not tied down to using it to allocate 
memory for you. The constructors of the message block allow you to  

#" Create and pass in your own data block that points to the message data. 

#" Pass in a pointer to the message data and the message block will create and setup the 
underlying data block. The message block will manage the memory for the data block 
but not for the message data. 
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The example below illustrates how a message block can be passed a pointer to the 
message data and ACE_Message_Block creates and manages the underlying 
ACE_Data_Block. 

  
//The data

char data[size];

data = ”This is my data”;

//Create a message block to hold the data

ACE_Message_Block *mb = new ACE_Message_Block (data, // data that is stored

// in the newly created data

//

blocksize); //size of the block that

//is to be stored.

 
This constructor creates an underlying data block and sets it up to point to the beginning 
of the data that is passed to it. The message block that is created does not make a copy of 
the data nor does it assume ownership of it. This means that when the message block mb 
is destroyed, the associated data buffer data will NOT be destroyed (i.e. this memory 
will not be deallocated). This makes sense, the message block didn’t make a copy 
therefore the memory was not allocated by the message block, so it shouldn’t be 
responsible for its deallocation. 
 

Ins e r t ing a nd m a nipula t ing d a t a in a  m e ss a g e blo c k 

In addition to the constructors, ACE_Message_Block offers several methods to insert data 
into a message block directly. Additional methods are also available to manipulate the 
data that is already present in a message block.  
Each ACE_Message_Block has two underlying pointers that are used to read and write 
data to and from a message block, aptly named the rd_ptr and wr_ptr. They are 
accessible directly by calling the rd_ptr() and wr_ptr() methods.  The rd_ptr points to the 
location where data is to be  read from next, and the wr_ptr points to the location where 
data is to be written to next. The programmer must carefully manage these pointers to 
insure that both of them always point to the correct location.  When data is read or written 
using these pointers they must be advanced by the programmer, they do not update 
automagically. Most internal message block methods also make use of these two pointers 
therefore making it possible for them to change state when you call a method on the 
message block. It is the programmer's responsibility to make sure that he/she is aware of 
what is going on with these pointers. 
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C opying a nd Dupli c a t ing  

Data can be copied into a message block by using the copy() method on 
ACE_Message_Block. 
 

int copy(const char *buf, size_t n);

 
The copy method takes a pointer to the buffer that is to be copied into the message block 
and the size of the data to be copied as arguments. This method uses the wr_ptr and 
begins writing from this point onwards till it reaches the end of the data buffer as 
specified by the size argument. copy() will also ensure that the wr_ptr is updated so that 
is points to the new end of the buffer. Note that this method will actually perform a 
physical copy, and thus should be used with caution.  
The base() and length() methods can be used in conjunction to copy out the entire data 
buffer from a message block. base() returns a pointer that points to the first data item on 
the data block and length() returns the total size of the enqueued data. Adding the base 
and length gets you a pointer to the end of the data block. Using these methods together 
you can write a routinue that takes the data from the message block and makes an 
external copy. 
The duplicate() and clone() methods are used to make a “copy” of a message block. The 
clone() method as the name suggests actually creates a fresh copy of the entire message 
block including its data blocks and continuations, i.e. a deep copy. The duplicate() 
method, on the other hand, uses the ACE_Message_Block’s reference counting 
mechanism. It returns a pointer to the message block  that  is to be duplicated and 
internally  increments an internal reference count.  
 

Re le a sing M e ss a g e B lo c k s 

Once done with a message block the programmer can call the release() method on it. If 
the message data memory was allocated by the message block then calling the release() 
method will also de-allocate that memory. If the message block was reference counted, 
then the release ()  will cause the count to decrement until the count reaches zero, after 
which the message block and its associated data blocks are removed from memory.  
 

M e s s a g e  Q u e u e s in A C E  

As mentioned earlier, ACE has several different types of message queues, which in 
general can be divided into two categories, static and dynamic. The static queue is a 
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general purpose message queue named ACE_Message_Queue (as if you couldn’t guess) 
whereas the dynamic message queues (ACE_Dynamic_Message_Queue) are real-time 
message queues. The major difference between these two types of queues is that 
messages on static queues have static priority, i.e. once the priority is set it does not 
change. On the other hand, in the dynamic message queues, the priority of messages may 
change dynamically, based on parameters such as execution time and deadline. 
The following example illustrates how to create a simple static message queue and then 
how to enqueue and dequeue message blocks onto it. 
Example 1a

#ifndef MQ_EG1_H_

#define MQ_EG1_H_

#include "ace/Message_Queue.h"

class QTest

{

public:

//Constructor creates a message queue with no synchronization

QTest(int num_msgs);

//Enqueue the num of messages required onto the message mq.

int enq_msgs();

//Dequeue all the messages previously enqueued.

int deq_msgs ();

private:

//Underlying message queue

ACE_Message_Queue<ACE_NULL_SYNCH> *mq_;

//Number of messages to enqueue.

int no_msgs_;

};

#endif /*MQ_EG1.H_*/

 
 

Example 1b

#include "mq_eg1.h"

QTest::QTest(int num_msgs)

:no_msgs_(num_msgs)

{

ACE_TRACE("QTest::QTest");

//First create a message queue of default size.

if(!(this->mq_=new ACE_Message_Queue<ACE_NULL_SYNCH> ()))

ACE_DEBUG((LM_ERROR,"Error in message queue initialization \n"));

}

int



 

 
 

133

QTest::enq_msgs()

{

ACE_TRACE("QTest::enq_msg");

for(int i=0; i<no_msgs_;i++)

{

//create a new message block specifying exactly how large

//an underlying data block should be created.

ACE_Message_Block *mb;

ACE_NEW_RETURN(mb,

ACE_Message_Block(ACE_OS::strlen("This is message 1\n")),

-1);

//Insert data into the message block using the wr_ptr

ACE_OS::sprintf(mb->wr_ptr(), "This is message %d\n", i);

//Be careful to advance the wr_ptr by the necessary amount.

//Note that the argument is of type "size_t" that is mapped to

//bytes.

mb->wr_ptr(ACE_OS::strlen("This is message 1\n"));

//Enqueue the message block onto the message queue

if(this->mq_->enqueue_prio(mb)==-1)

{

ACE_DEBUG((LM_ERROR,"\nCould not enqueue on to mq!!\n"));

return -1;

}

ACE_DEBUG((LM_INFO,"EQ'd data: %s\n", mb->rd_ptr() ));

} //end for

//Now dequeue all the messages

this->deq_msgs();

return 0;

}

int

QTest::deq_msgs()

{

ACE_TRACE("QTest::dequeue_all");

ACE_DEBUG((LM_INFO,"No. of Messages on Q:%d Bytes on Q:%d \n"

,mq_->message_count(),mq_->message_bytes()));

ACE_Message_Block *mb;

//dequeue the head of the message queue until no more messages are

//left. Note that I am overwriting the message block mb and I since

//I am using the dequeue_head() method I dont have to worry about

//resetting the rd_ptr() as I did for the wrt_ptr()

for(int i=0;i <no_msgs_; i++)

{

mq_->dequeue_head(mb);

ACE_DEBUG((LM_INFO,"DQ'd data %s\n", mb->rd_ptr() ));
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//Release the memory associated with the mb

mb->release();

}

return 0;

}

int main(int argc, char* argv[])

{

if(argc <2)

ACE_ERROR_RETURN((LM_ERROR, "Usage %s num_msgs", argv[0]), -1);

QTest test(ACE_OS::atoi(argv[1]));

if(test.enq_msgs() == -1)

ACE_ERROR_RETURN( (LM_ERROR,"Program failure \n"), -1);

}

 
The above example illustrates several methods of the message queue class. The example 
consists of a single QTest class which instantiates a message queue of default size with 
ACE_NULL_SYNCH locking. The locks (a mutex and a condition variable) are used by 
the message queue to  

• Ensure the safety of the reference count maintained by message blocks  against 
race conditions when accessed by multiple threads. 

• To “wake up” all threads that are sleeping because the message queue was empty 
or full. 

In this example, since there is just a single thread, the template synchronization parameter 
for the message queue is set to null (ACE_NULL_SYNCH which means use 
ACE_Null_Mutex and ACE_Null_Condition). The enq_msgs() method of QTest is then 
called, which enters a loop that creates and enqueues messages onto the message queue. 
The constructor of ACE_Message_Block is passed the size of the message data. Using 
this constructor causes the memory to be managed automatically (i.e. the memory will be 
released when the message block is deleted i.e. release()’d). The wr_ptr is then obtained 
(using the wr_ptr() accessor method) and data is copied into the message block. After this 
the wr_ptr is advanced forward. The enqueue_prio() method of the message queue is then 
used to actually enqueue the message block onto the underlying message queue.  
After no_msgs_ message blocks have been created, initialized  and inserted onto the 
message queue, enq_msgs() calls the deq_msgs () method. This method dequeues each 
of the messages from the message queue using the dequeue_head() method of 
ACE_Message_Queue.   After dequeing a message its data is displayed and then the 
message is release()Õd. 
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W a t e r M a r k s 

Water marks are used in message queues to indicate when the message queue has too 
much data on it (the message queue has reached the high water mark) or when the 
message queue has an insufficient amount of data on it (the message queue has reached 
its low water mark). Both these marks are used for flow control - for example the 
low_water_mark may be used to avoid situations like the “silly window syndrome” in 
TCP and the high_water_mark may be used to “stem” or slow down a sender or producer 
of data. 
The message queues in ACE achieve this functionality by maintaining a count of the total 
amount of data in bytes that has been enqueued. Thus, whenever a new message block is 
enqueued on to the message queue, it will first determine its length, then check if it can 
enqueue the message block (i.e. make sure that the message queue doesn’t exceed its high 
water mark if this new message block is enqueued). If the message queue cannot enqueue 
the data and it possesses a lock (i.e. ACE_SYNC is used and not ACE_NULL_SYNCH 
as the template parameter to the message queue), it will block the caller until sufficient 
room is available, or until the timeout in the enqueue method expires. If the timeout 
expires or if the queue possessed a null lock, then the enqueue method will return with a 
value of -1, indicating that it was unable to enqueue the message.  
Similarly, when the dequeue_head  method of ACE_Message_Queue is called, it checks 
to make sure that after dequeuing the amount of data left is more then the low water 
mark. If this is not the case,  it blocks if the queue has a lock otherwise it returns -1, 
indicating failure (the same way the enqueue methods work). 
There are two methods which can be used to set and get the water marks that are 
 

//get the high water mark

size_t high_water_mark(void)

//set the high water mark

void high_water_mark(size_t hwm);

//get the low water_mark

size_t low_water_mark(void)

//set the low water_mark

void low_water_mark(size_t lwm)

 
 

U sin g M e s s a g e  Q u e u e  I t e r a tor s 

As is common with other container classes, forward and reverse iterators are available for 
message queues in ACE. These iterators are named ACE_Message_Queue_Iterator and 
ACE_Message_Queue_Reverse_Iterator. Each of these require a template parameter 
which is used for synchronization while traversing the message queue. If multiple threads 
are using the message queue, then this should be set to ACE_SYNCH - otherwise it may 
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be set to ACE_NULL_SYNCH. When an iterator object is created, its constructor must be 
passed  a reference to the message queue we wish it to iterate over.  
The following example illustrates the water marks and the iterators:  
Example 2

#include ”ace/Message_Queue.h”

#include ”ace/Get_Opt.h”

#include ”ace/Malloc_T.h”

#define SIZE_BLOCK 1

class Args{

public:

Args(int argc, char*argv[],int& no_msgs, ACE_Message_Queue<ACE_NULL_SYNCH>* &mq){

ACE_Get_Opt get_opts(argc,argv,”h:l:t:n:xsd”);

while((opt=get_opts())!=-1)

switch(opt){

case ’n’:

//set the number of messages we wish to enqueue and dequeue

no_msgs=ACE_OS::atoi(get_opts.optarg);

ACE_DEBUG((LM_INFO,”Number of Messages %d \n”,no_msgs));

break;

case ’h’:

//set the high water mark

hwm=ACE_OS::atoi(get_opts.optarg);

mq->high_water_mark(hwm);

ACE_DEBUG((LM_INFO,”High Water Mark %d msgs \n”,hwm));

break;

case ’l’:

//set the low water mark

lwm=ACE_OS::atoi(get_opts.optarg);

mq->low_water_mark(lwm);

ACE_DEBUG((LM_INFO,”Low Water Mark %d msgs \n”,lwm));

break;

default:

ACE_DEBUG((LM_ERROR,

”Usage -n<no. messages> -h<hwm> -l<lwm>\n”));

break;

}

}

private:

int opt;

int hwm;

int lwm;

};

class QTest{

public:

QTest(int argc, char*argv[]){

//First create a message queue of default size.
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if(!(this->mq_=new ACE_Message_Queue<ACE_NULL_SYNCH> ()))

ACE_DEBUG((LM_ERROR,”Error in message queue initialization \n”));

//Use the arguments to set the water marks and the no of messages

args_ = new Args(argc,argv,no_msgs_,mq_);

}

int start_test(){

for(int i=0; i<no_msgs_;i++){

//Create a new message block of data buffer size 1

ACE_Message_Block * mb= new ACE_Message_Block(SIZE_BLOCK);

//Insert data into the message block using the rd_ptr

*mb->wr_ptr()=i;

//Be careful to advance the wr_ptr

mb->wr_ptr(1);

//Enqueue the message block onto the message queue

if(this->mq_->enqueue_prio(mb)==-1){

ACE_DEBUG((LM_ERROR,”\nCould not enqueue on to mq!!\n”));

return -1;

}

ACE_DEBUG((LM_INFO,”EQ’d data: %d\n”,*mb->rd_ptr()));

}

//Use the iterators to read

this->read_all();

//Dequeue all the messages

this->dequeue_all();

return 0;

}

void read_all(){

ACE_DEBUG((LM_INFO,”No. of Messages on Q:%d Bytes on Q:%d \n”

,mq_->message_count(),mq_->message_bytes()));

ACE_Message_Block *mb;

//Use the forward iterator

ACE_DEBUG((LM_INFO,”\n\nBeginning Forward Read \n”));

ACE_Message_Queue_Iterator<ACE_NULL_SYNCH> mq_iter_(*mq_);

while(mq_iter_.next(mb)){

mq_iter_.advance();

ACE_DEBUG((LM_INFO,”Read data %d\n”,*mb->rd_ptr()));

}

//Use the reverse iterator

ACE_DEBUG((LM_INFO,”\n\nBeginning Reverse Read \n”));

ACE_Message_Queue_Reverse_Iterator<ACE_NULL_SYNCH>

mq_rev_iter_(*mq_);

while(mq_rev_iter_.next(mb)){

mq_rev_iter_.advance();

ACE_DEBUG((LM_INFO,”Read data %d\n”,*mb->rd_ptr()));

}
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}

void dequeue_all(){

ACE_DEBUG((LM_INFO,”\n\nBeginning DQ \n”));

ACE_DEBUG((LM_INFO,”No. of Messages on Q:%d Bytes on Q:%d \n”,

mq_->message_count(),mq_->message_bytes()));

ACE_Message_Block *mb;

//dequeue the head of the message queue until no more messages

//are left

for(int i=0;i<no_msgs_;i++){

mq_->dequeue_head(mb);

ACE_DEBUG((LM_INFO,”DQ’d data %d\n”,*mb->rd_ptr()));

}

}

private:

Args *args_;

ACE_Message_Queue<ACE_NULL_SYNCH> *mq_;

int no_msgs_;

};

int main(int argc, char* argv[]){

QTest test(argc,argv);

if(test.start_test()<0)

ACE_DEBUG((LM_ERROR,”Program failure \n”));

}

This example uses the ACE_Get_Opt class (See Appendix for more on this utility class) 
to obtain the low and high water marks (in the Args class). The low and high water marks 
are set using the low_water_mark() and high_water_mark() accessor functions. Besides 
this, there is a read_all() method which uses the ACE_Message_Queue_Iterator and 
ACE_Message_Queue_Reverse_Iterator to first read in the forward and then in the 
reverse direction.  

D y n a mi c  or R e a l-T i m e  M e s s a g e  Q u e u e s 

As was mentioned above, dynamic message queues are queues in which the priority of 
the messages enqueued change with time. Such message queues are thus inherently more 
useful in real-time applications, where such kind of behavior is desirable.  
ACE currently provides for two types of dynamic message queues, deadline-based and 
laxity-based (see [IX ]). The deadline-based message queues use the deadlines of each of 
the messages to set their priority. The message block on the queue which has the earliest 
deadline will be dequeued first when the dequeue_head() method is called using the 
earliest deadline first algorithm. The laxity-based message queues, however, use both 
execution time and deadline together to calculate the laxity, which is then used to 
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prioritize each message block. The laxity is useful, as when scheduling by deadline it 
may be possible that a task is scheduled which has the earliest deadline, but has such a 
long execution time that it will not complete even if it is scheduled immediately. This 
negatively affects other tasks, since it may block out tasks which are schedulable. The 
laxity will take into account this long execution time and make sure that if the task will 
not complete, that it is not scheduled. The scheduling in laxity queues is based  on the 
minimum laxity first algorithm. 
Both laxity-based message queues and deadline-based message queues are implemented 
as ACE_Dynamic_Message_Queue’s. ACE uses the STRATEGY pattern to provide for 
dynamic queues with different scheduling characteristics. Each message queue uses a 
different “strategy” object to dynamically set priorities of the messages on the message 
queue. These “strategy” objects each encapsulate a different algorithm to calculate 
priorities based on execution time, deadlines, etc., and are called to do so whenever 
messages are enqueued or removed from the message queue. (For more on the 
STRATEGY pattern please see the reference “Design PatternsÓ).  The message strategy 
patterns  derive from  ACE_Dynamic_Message_Strategy and currently there are two 
strategies available: ACE_Laxity_Message_Strategy and 
ACE_Deadline_Message_Strategy. Therefore, to create a “laxity-based” dynamic 
message queue, an ACE_Laxity_Message_Strategy object must be created first. 
Subsequently, an ACE_Dynamic_Message_Queue object should be instantiated, which is 
passed the new strategy object as one of the parameters to its constructor. 
 
 
 
 
 
 

 

 

 

 

Creating Message Queues 

To simplify the creation of these different types of message queues, ACE provides for a 
concrete message queue factory named ACE_Message_Queue_Factory, which creates 
message queues of the appropriate type using a variant of the FACTORY METHOD 
pattern. (For more on the FACTORY METHOD pattern please see reference “Design 

ACE_Dynamic_Message_Queue ACE_Laxity_Message_Strategy 

The Dynamic Message 
Queue uses a Strategy 
Object to set the dynamic 
priorities in the queue. 
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PatternsÓ). The message queue factory has three static factory methods to create three 
different types of message queues:  
 static ACE_Message_Queue<ACE_SYNCH_USE> * 
  create_static_message_queue () 
 
 static ACE_Dynamic_Message_Queue<ACE_SYNCH_USE> * 
  create_deadline_message_queue (); 
 
 static ACE_Dynamic_Message_Queue<ACE_SYNCH_USE> * 
  create_laxity_message_queue ();

 Each of these methods returns a pointer to the message queue it has just created. Notice 
that all methods are static and that the create_static_message_queue() method returns an 
ACE_Message_Queue whereas the other two methods return an 
ACE_Dynamic_Message_Queue. 
This simple example illustrates the creation and use of dynamic and static message 
queues.  
Example 3

#include ”ace/Message_Queue.h”

#include ”ace/Get_Opt.h”

#include ”ace/OS.h”

class Args{

public:

Args(int argc, char*argv[],int& no_msgs, int& time,ACE_Message_Queue<ACE_NULL_SYNCH>*

&mq){

ACE_Get_Opt get_opts(argc,argv,”h:l:t:n:xsd”);

while((opt=get_opts())!=-1)

switch(opt){

case ’t’:

time=ACE_OS::atoi(get_opts.optarg);

ACE_DEBUG((LM_INFO,”Time: %d \n”,time));

break;

case ’n’:

no_msgs=ACE_OS::atoi(get_opts.optarg);

ACE_DEBUG((LM_INFO,”Number of Messages %d \n”,no_msgs));

break;

case ’x’:

mq=ACE_Message_Queue_Factory<ACE_NULL_SYNCH>::

create_laxity_message_queue();

ACE_DEBUG((LM_DEBUG,”Creating laxity q\n”));

break;

case ’d’:

mq=ACE_Message_Queue_Factory<ACE_NULL_SYNCH>::

create_deadline_message_queue();

ACE_DEBUG((LM_DEBUG,”Creating deadline q\n”));

break;

case ’s’:

mq=ACE_Message_Queue_Factory<ACE_NULL_SYNCH>::
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create_static_message_queue();

ACE_DEBUG((LM_DEBUG,”Creating static q\n”));

break;

case ’h’:

hwm=ACE_OS::atoi(get_opts.optarg);

mq->high_water_mark(hwm);

ACE_DEBUG((LM_INFO,”High Water Mark %d msgs \n”,hwm));

break;

case ’l’:

lwm=ACE_OS::atoi(get_opts.optarg);

mq->low_water_mark(lwm);

ACE_DEBUG((LM_INFO,”Low Water Mark %d msgs \n”,lwm));

break;

default:

ACE_DEBUG((LM_ERROR,”Usage specify queue type\n”));

break;

}

}

private:

int opt;

int hwm;

int lwm;

};

class QTest{

public:

QTest(int argc, char*argv[]){

args_ = new Args(argc,argv,no_msgs_,time_,mq_);

array_ =new ACE_Message_Block*[no_msgs_];

}

int start_test(){

for(int i=0; i<no_msgs_;i++){

ACE_NEW_RETURN (array_[i], ACE_Message_Block (1), -1);

set_deadline(i);

set_execution_time(i);

enqueue(i);

}

this->dequeue_all();

return 0;

}

//Call the underlying ACE_Message_Block method msg_deadline_time() to

//set the deadline of the message.

void set_deadline(int msg_no){

float temp=(float) time_/(msg_no+1);

ACE_Time_Value tv;

tv.set(temp);

ACE_Time_Value deadline(ACE_OS::gettimeofday()+tv);

array_[msg_no]->msg_deadline_time(deadline);
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ACE_DEBUG((LM_INFO,”EQ’d with DLine %d:%d,”, deadline.sec(),deadline.usec()));

}

//Call the underlying ACE_Message_Block method to set the execution time

void set_execution_time(int msg_no){

float temp=(float) time_/10*msg_no;

ACE_Time_Value tv;

tv.set(temp);

ACE_Time_Value xtime(ACE_OS::gettimeofday()+tv);

array_[msg_no]->msg_execution_time (xtime);

ACE_DEBUG((LM_INFO,”Xtime %d:%d,”,xtime.sec(),xtime.usec()));

}

void enqueue(int msg_no){

//Set the value of data at the read position

*array_[msg_no]->rd_ptr()=msg_no;

//Advance write pointer

array_[msg_no]->wr_ptr(1);

//Enqueue on the message queue

if(mq_->enqueue_prio(array_[msg_no])==-1){

ACE_DEBUG((LM_ERROR,”\nCould not enqueue on to mq!!\n”));

return;

}

ACE_DEBUG((LM_INFO,”Data %d\n”,*array_[msg_no]->rd_ptr()));

}

void dequeue_all(){

ACE_DEBUG((LM_INFO,”Beginning DQ \n”));

ACE_DEBUG((LM_INFO,”No. of Messages on Q:%d Bytes on Q:%d \n”,

mq_->message_count(),mq_->message_bytes()));

for(int i=0;i<no_msgs_ ;i++){

ACE_Message_Block *mb;

if(mq_->dequeue_head(mb)==-1){

ACE_DEBUG((LM_ERROR,”\nCould not dequeue from mq!!\n”));

return;

}

ACE_DEBUG((LM_INFO,”DQ’d data %d\n”,*mb->rd_ptr()));

}

}

private:

Args *args_;

ACE_Message_Block **array_;

ACE_Message_Queue<ACE_NULL_SYNCH> *mq_;

int no_msgs_;

int time_;

};

int main(int argc, char* argv[]){

QTest test(argc,argv);

if(test.start_test()<0)

ACE_DEBUG((LM_ERROR,”Program failure \n”));

}
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The above example is very similar to the previous examples, but adds the dynamic 
message queues into the picture. In the  Args class, we have added options to create all 
the different types of message queues using the ACE_Message_Queue_Factory. 
Furthermore, two new methods have been added to the QTest class to set the deadlines 
and execution times of each of the message blocks as they are created 
(set_deadline()and set_execution_time()). These methods use the 
ACE_Message_Block methods msg_execution_time() and msg_deadline_time(). Note that 
these methods take the absolute and NOT the relative time, which is why they are used in 
conjunction with the ACE_OS::gettimeofday() method.  
The deadlines and execution times are set with the help of a time parameter. The 
deadline is set such that the first message will have the latest deadline and should be 
scheduled last in the case of deadline message queues. Both the execution time and  
deadline are taken into account when using the laxity queues, however.  
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A ppendix: U tility Classes 
Utility classes used in ACE 
 

A d dr e s s Wr a pp e r C l a s s e s 

A C E_IN E T_A ddr 

The ACE_INET_Addr is a wrapper class around the Internet domain address family 
(AF_INET). This class derives from ACE_Addr in ACE. The various constructors of this 
class can be used to initialize the object to have a certain IP address and port. Besides 
this, the class has several set and get methods and has overloaded the comparison 
operations i.e., = = operator and the != operator. For further details on how to use this 
class see the reference manual. 

A C E_U NIX_A ddr 

The ACE_UNIX_Addr class is a wrapper class around the UNIX domain address family 
(AF_UNIX) and also derives from ACE_Addr. This class has functionality similar to the 
ACE_INET_Addr class. For further details see the reference manual. 
 

T i m e  w r a pp e r c l a s s e s 

A C E_T im e_V alu e 

L o g gin g w i t h A C E_D E B U G a nd A C E_E RR O R 

The ACE_DEBUG and ACE_ERROR macros are useful macros for printing and logging 
debug and error information. Their usage has been illustrated throughout this tutorial.  
 

Chapter 

A



 

 
 

146

 
 
The following format specifiers are available for these macros. Each of these options is 
prefixed by '%', as in printf format strings: 
 
Format Specifier Description 
   'a'  exit the program at this point (var-argument is the exit status!) 
   'A'  print an ACE_timer_t value 
   'c'  print a character 
   'i', 'd'  print a decimal number 
   'I',  indent according to nesting depth 
   'e', 'E', 'f', 'F', 'g', 'G'  print a double 
   'l' print line number where an error occurred 
   'm' print the message corresponding to errno value 
   'N'  print file name where the error occurred. 
   'n'  print the name of the program (or "<unknown>" if not set) 
   'o'  print as an octal number 
   'P'  print out the current process id 
   'p'  print out the appropriate errno value from sys_errlist 
   'Q' print a uint64 number 
   'r'  call the function pointed to by the corresponding argument 
   'R'  print return status 
   'S'  print out the appropriate _sys_siglist entry corresponding to 

var-argument. 
   's'  print out a character string 
   'T'  print timestamp in hour:minute:sec: usec format. 
   'D'  print timestamp in month/day/year hour:minute:sec:usec 

format. 
   't'  print thread id (1 if single-threaded) 
   'u'  print as unsigned int 
   'w'  print a wide character 
   'W'  print a wide character string 
   'X', 'x'  print as a hex number 
   '%'  print out a single percent sign, '%' 
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O b t a in ing c o m m a n d lin e  a r g u m e n t s 

A C E_G e t_O pt 

This utility class is used to obtain arguments from the user and is based on the getopt()
<3c> function in stdlib. The constructor of this class is passed in a string called the 
optstring, which specifies the switches that the application wishes to respond to. If the 
switch letter is followed by a colon, it means that the switch also expects an argument. 
For example, if the optstring is “ab:c”, then the application expect “-a” and “-c” without 
an argument and “-b” with an argument. For example, the application would be run as: 
MyApplication –a –b 10 –c

The () operator has been overloaded and is used to scan the elements of argv for the 
options specified in the option string. 
The following example will help make it clear how to use this class to obtain arguments 
from the user. 
Example

#include "ace/Get_Opt.h"

int main (int argc, char *argv[])

{

//Specify option string so that switches b, d, f and h all expect

//arguments. Switches a, c, e and g expect no arguments.

ACE_Get_Opt get_opt (argc, argv, "ab:cd:ef:gh:");

int c;

//Process the scanned options with the help of the overloaded ()

//operator.

while ((c = get_opt ()) != EOF)

switch (c)

{

case 'a':

ACE_DEBUG ((LM_DEBUG, "got a\n"));

break;

case 'b':

ACE_DEBUG ((LM_DEBUG, "got b with arg %s\n",

get_opt.optarg));

break;

case 'c':

ACE_DEBUG ((LM_DEBUG, "got c\n"));

break;

case 'd':

ACE_DEBUG ((LM_DEBUG, "got d with arg %s\n",

get_opt.optarg));

break;

case 'e':
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ACE_DEBUG ((LM_DEBUG, "got e\n"));

break;

case 'f':

ACE_DEBUG ((LM_DEBUG, "got f with arg %s\n",

get_opt.optarg));

break;

case 'g':

ACE_DEBUG ((LM_DEBUG, "got g\n"));

break;

case 'h':

ACE_DEBUG ((LM_DEBUG, "got h with arg %s\n",

get_opt.optarg));

break;

default:

ACE_DEBUG ((LM_DEBUG, "got %c, which is unrecognized!\n",

c));

break;

}

//optind indicates how much of argv has been scanned so far, while

//get_opt hasn’t returned EOF. In this case it indicates the index in

//argv from where the option switches have been fully recognized and the

//remaining elements must be scanned by the called himself.

for (int i = get_opt.optind; i < argc; i++)

ACE_DEBUG ((LM_DEBUG, "optind = %d, argv[optind] = %s\n",

i, argv[i]));

return 0;

}

For further details on using this utility wrapper class, please see the reference manual. 

A C E_Arg_Shift e r 

This ADT shifts known arguments, or options, to the back of the argv vector, so  deeper 
levels of argument parsing can locate the yet-unprocessed arguments at the beginning of 
the vector.  
The ACE_Arg_Shifter copies the pointers of the argv vector into a temporary array. As 
the ACE_Arg_Shifter iterates over the temp, it places known arguments in the rear of the 
argv and unknown ones in the beginning. So, after having visited all the arguments in 
the temp vector, ACE_Arg_Shifter has placed all the unknown arguments in their original 
order at  the front of argv.  
This class is also very useful in parsing options from the command line. The following 
example will help illustrate this: 
Example

#include "ace/Arg_Shifter.h"

int main(int argc, char *argv[]){

ACE_Arg_Shifter arg(argc,argv);

while(arg.is_anything_left ()){

char *current_arg=arg.get_current();
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if(ACE_OS::strcmp(current_arg,"-region")==0){

arg.consume_arg();

ACE_OS::printf("<region>= %s \n",arg.get_current());

}

else if(ACE_OS::strcmp(current_arg,"-tag")==0){

arg.consume_arg();

ACE_OS::printf("<tag>= %s \n",arg.get_current());

}

else if(ACE_OS::strcmp(current_arg,"-view_uuid")==0){

arg.consume_arg();

ACE_OS::printf("<view_uuid>=%s\n",arg.get_current());

}

arg.consume_arg();

}

for(int i=0;argv[i]!=NULL;i++)

ACE_DEBUG((LM_DEBUG,”Resultant vector”: %s \n",argv[i]));

}
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If the above example is run as follows: 
.../tests<330> arg -region missouri -tag 10 -view_uuid syyid -teacher schmidt -student

tim

 
The results obtained are: 

<region> missouri

<tag>= 10

<view_uuid>=syyid

Resultant Vector: tim

Resultant Vector: -student

Resultant Vector: schmidt

Resultant Vector: -teacher

Resultant Vector: syyid

Resultant Vector: -view_uuid

Resultant Vector: 10

Resultant Vector: -tag

Resultant Vector: missouri

Resultant Vector: -region

Resultant Vector: ./arg
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